Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2024_3_a4, author = {V. S. Salicki}, title = {Bending a circular five-layer plate by local load}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {27--31}, publisher = {mathdoc}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2024_3_a4/} }
V. S. Salicki. Bending a circular five-layer plate by local load. Problemy fiziki, matematiki i tehniki, no. 3 (2024), pp. 27-31. http://geodesic.mathdoc.fr/item/PFMT_2024_3_a4/
[1] A.G. Gorshkov, E.I. Starovoitov, A.V. Yarovaya, Mekhanika sloistykh vyazkouprugoplasticheskikh elementov konstruktsii, FIZMATLIT, M., 2005, 576 pp.
[2] L. Aghalovyan, Asymptotic theory of anisotropic plates and shells, World Scientific Publishing, Singapore–London, 2015, 376 pp.
[3] M.A. Zhuravkov, E.I. Starovoitov, Matematicheskie modeli mekhaniki tverdogo tela, BGU, Minsk, 2021, 535 pp.
[4] M.A. Zhuravkov, Lyu Yongtao, E.I. Starovoitov, Mechanics of Solid Deformable Body, Springer, Singapore, 2022, 317 pp. | MR
[5] A. Abdusattarov, E.I. Starovoitov, N.B. Ruzieva, Deformirovanie i povrezhdaemost uprugoplasticheskikh elementov konstruktsii pri tsiklicheskikh nagruzheniyakh, «IDEAL PRESS», Tashkent, 2023, 381 pp.
[6] E.A. Lachugina, “Poperechnye kolebaniya pyatisloinoi uprugoi krugovoi plastiny s zhestkimi zapolnitelyami”, Mekhanika. Issledovaniya i innovatsii, 2022, no. 15, 212-219
[7] E.A. Lachugina, “Chastoty sobstvennykh kolebanii pyatisloinoi krugovoi plastiny”, Teoreticheskaya i prikladnaya mekhanika, 38, BNTU, Minsk, 2023, 227-233
[8] A.G. Gorshkov, E.I. Starovoitov, A.V. Yarovaya, “Harmonic vibrations of a viscoelastoplastic sandwich cylindrical shell”, International Applied Mechanics, 37:9 (2001), 1196-1203 | DOI | Zbl
[9] E.I. Starovoitov, D.V. Leonenko, “Issledovanie spektra chastot trekhsloinoi tsilindricheskoi obolochki s uprugim napolnitelem”, Mekhanika kompozitsionnykh materialov i konstruktsii, 21:2 (2015), 162-169
[10] E.I. Starovoitov, Yu.M. Pleskachevskii, D.V. Leonenko, D.V. Tarlakovskii, “Deformirovanie stupenchatoi kompozitnoi balki v temperaturnom pole”, Inzhenerno-fizicheskii zhurnal, 88:4 (2015), 987-993
[11] E.I. Starovoitov, D.V. Leonenko, “Deformirovanie trekhsloinogo sterzhnya v temperaturnom pole”, Mekhanika mashin, mekhanizmov i materialov, 2013, no. 1 (22), 31-35
[12] Yu.V. Zakharchuk, “Trekhsloinaya krugovaya uprugoplasticheskaya plastina so szhimaemym zapolnitelem”, Problemy fiziki, matematiki i tekhniki, 2018, no. 4 (37), 72-79
[13] E.I. Starovoitov, Y.V. Zakharchuk, E.L. Kuznetsova, “Elastic circular sandwich plate with compressible filler under axially symmetrical thermal force load”, Journal of the Balkan Tribological Association, 27:2 (2021), 175-188
[14] E.I. Starovoitov, “Izgib trekhsloinoi plastiny ravnomerno raspredelennoi nagruzkoi v neitronnom potoke”, Problemy fiziki, matematiki i tekhniki, 2021, no. 3 (48), 56-62 | DOI
[15] E.I. Starovoitov, A.G. Kozel, “Izgib uprugoi krugovoi trekhsloinoi plastiny na osnovanii Pasternaka”, Mekhanika kompozitsionnykh materialov i konstruktsii, 24:3 (2018), 392-406 | DOI
[16] A.G. Kozel, “Matematicheskaya model deformirovaniya krugovoi trekhsloinoi plastiny na osnovanii Pasternaka”, Problemy fiziki, matematiki i tekhniki, 2017, no. 1 (30), 42-46
[17] A.V. Nesterovich, “Neosesimmetrichnoe termosilovoe deformirovanie krugovoi odnosloinoi plastiny”, Problemy fiziki, matematiki i tekhniki, 2016, no. 2 (27), 54-61
[18] A.V. Nesterovich, “Napryazhennoe sostoyanie krugovoi trekhsloinoi plastiny pri osesimmetrichnom nagruzhenii v svoei ploskosti”, Mekhanika. Issledovaniya i innovatsii, 2019, no. 12 (12), 152-157
[19] V.S. Salitskii, “Uravneniya ravnovesiya krugovoi pyatisloinoi plastiny v usiliyakh”, Materialy XXVII Mezhdunar. simpoziuma «Dinamicheskie i tekhnologicheskie problemy mekhaniki konstruktsii i sploshnykh sred» im. A.G. Gorshkova, v. 1, 2021, 199-201
[20] V.S. Salitskii, “Izgib zaschemlennoi po konturu krugovoi pyatisloinoi plastiny”, Mekhanika. Issledovaniya i innovatsii, 15, Gomel, 2022, 209-213
[21] V.S. Salitskii, “Izgib krugovoi pyatisloinoi plastiny”, Teoreticheskaya i prikladnaya mekhanika, 38, Minsk, 2023, 234-239