Development of software tools for modeling and optimization of laser cutting parameters of brittle non-metallic materials
Problemy fiziki, matematiki i tehniki, no. 3 (2024), pp. 18-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper describes the development of tools for modeling and searching for optimal parameters for the process of laser cutting of brittle non-metallic materials using laser chopping. Software tools are designed for finite element modeling, neural network modeling and searching for optimal parameters using a genetic algorithm and are implemented in Python. The use of the developed software is shown using the example of searching for optimal parameters for cutting a quartz plate.
Keywords: neural network modeling, finite element modeling, FEniCS laser cutting, genetic algorithm, parameter optimization.
@article{PFMT_2024_3_a2,
     author = {Yu. V. Nikitjuk and V. A. Prohorenko and O. M. Demidenko and V. S. Smorodin and A. V. Voruev},
     title = {Development of software tools for modeling and optimization of laser cutting parameters of brittle non-metallic materials},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {18--22},
     publisher = {mathdoc},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2024_3_a2/}
}
TY  - JOUR
AU  - Yu. V. Nikitjuk
AU  - V. A. Prohorenko
AU  - O. M. Demidenko
AU  - V. S. Smorodin
AU  - A. V. Voruev
TI  - Development of software tools for modeling and optimization of laser cutting parameters of brittle non-metallic materials
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2024
SP  - 18
EP  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2024_3_a2/
LA  - ru
ID  - PFMT_2024_3_a2
ER  - 
%0 Journal Article
%A Yu. V. Nikitjuk
%A V. A. Prohorenko
%A O. M. Demidenko
%A V. S. Smorodin
%A A. V. Voruev
%T Development of software tools for modeling and optimization of laser cutting parameters of brittle non-metallic materials
%J Problemy fiziki, matematiki i tehniki
%D 2024
%P 18-22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2024_3_a2/
%G ru
%F PFMT_2024_3_a2
Yu. V. Nikitjuk; V. A. Prohorenko; O. M. Demidenko; V. S. Smorodin; A. V. Voruev. Development of software tools for modeling and optimization of laser cutting parameters of brittle non-metallic materials. Problemy fiziki, matematiki i tehniki, no. 3 (2024), pp. 18-22. http://geodesic.mathdoc.fr/item/PFMT_2024_3_a2/

[1] V.S. Kondratenko, S.A. Kudzh, “Precision Cutting of Glass and Other Brittle Materials by Laser-Controlled Thermo-Splitting”, Glass and ceramics, 74 (2017), 75-81 | DOI

[2] A.N. Serdyukov, S.V. Shalupaev, Y.V. Nikityuk, “Features of controlled laser thermal cleavage of crystalline silicon”, Crystallography Reports, 55:6 (2010), 933–937 | DOI

[3] A.N. Serdyukov, E.B. Shershnev, Y.V. Nikityuk et al., “Features of controlled laser thermal cleavage of crystal quartz”, Crystallography Reports, 57:6 (2012), 792-797 | DOI

[4] Y.V. Nikitjuk, A.N. Serdyukov, I.Y. Aushev, “Determination of the parameters of twobeam laser splitting of silicate glasses using regression and neural network models”, Journal of the Belarusian State University. Physics, 2022, no. 1, 35-43 | DOI

[5] Yu.V. Nikityuk, A.N. Serdyukov, V.A. Prokhorenko, I.Yu. Aushev, “Primenenie iskusstvennykh neironnykh setei i metoda konechnykh elementov dlya opredeleniya parametrov obrabotki kvartsevykh zolgel stekol ellipticheskimi lazernymi puchkami”, Problemy fiziki, matematiki i tekhniki, 2021, no. 3 (48), 30-36

[6] Y.V. Nikityuk, A.N. Serdyukov, I.Y. Aushev, “Optimization of two-beam laser cleavage of silicate glass”, Journal of Optical Technology, 89:2 (2022), 121-125 | DOI

[7] Y.V. Nikitjuk, A.N. Serdyukov, “Determination of the Parameters of Controlled Laser Thermal Cleavage of Crystalline Silicon Using Regression and Neural Network Models”, Crystallogr. Rep., 68 (2023), 1199-1204 | DOI

[8] Yu.V. Nikityuk, V.A. Prokhorenko, A.I. Kulyba, “Mnogokriterialnaya optimizatsiya parametrov lazernoi rezki kvartsevogo stekla s primeneniem neirosetevogo modelirovaniya i geneticheskogo algoritma”, Problemy fiziki, matematiki i tekhniki, 2023, no. 3 (56), 26-31

[9] Y. Nikitjuk, V. Prokhorenko, A. Semchenko, D. Kovalenko, “Multi-Criteria Optimization of Quartz Glass Laser Cleaving Parameters via Neural Network Simulation and Genetic Algorithm”, 2023 7th International Conference on Information, Control, and Communication Technologies (ICCT) (2023, Astrakhan, Russian Federation), 1–3 | DOI

[10] Y. Nikityuk, V. Prokhorenko, A. Semchenko, D. Kovalenko, “Optimization of Quartz Sol-gel Glass Cutting Parameters by Elliptical Laser Beams Using Neural Network Simulation and Genetic Algorithm”, Recent Advances in Technology Research and Education, Inter-Academia 2023, Lecture Notes in Networks and Systems, 939, eds. Y. Ono, J. Kondoh, Springer, Cham, 2023 | DOI

[11] H.P. Langtangen, A Logg Solving PDEs in Python: the FEniCS tutorial I, Springer, Cham, 2017, 146 pp. | DOI | MR

[12] F. Chollet, Deep learning with Python, Manning Publications Co., Shelter Island, 2018, 384 pp.