Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2024_3_a15, author = {K. S. Dzick and N. I. Mukhurov and I. Kruse and R. M. Asimov and V. S. Asipovich}, title = {Methods and software for anomalies searching in the telemetry data of a solar power plant based on the artificial neuron network {\textendash} autoencoder}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {92--100}, publisher = {mathdoc}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2024_3_a15/} }
TY - JOUR AU - K. S. Dzick AU - N. I. Mukhurov AU - I. Kruse AU - R. M. Asimov AU - V. S. Asipovich TI - Methods and software for anomalies searching in the telemetry data of a solar power plant based on the artificial neuron network – autoencoder JO - Problemy fiziki, matematiki i tehniki PY - 2024 SP - 92 EP - 100 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2024_3_a15/ LA - ru ID - PFMT_2024_3_a15 ER -
%0 Journal Article %A K. S. Dzick %A N. I. Mukhurov %A I. Kruse %A R. M. Asimov %A V. S. Asipovich %T Methods and software for anomalies searching in the telemetry data of a solar power plant based on the artificial neuron network – autoencoder %J Problemy fiziki, matematiki i tehniki %D 2024 %P 92-100 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2024_3_a15/ %G ru %F PFMT_2024_3_a15
K. S. Dzick; N. I. Mukhurov; I. Kruse; R. M. Asimov; V. S. Asipovich. Methods and software for anomalies searching in the telemetry data of a solar power plant based on the artificial neuron network – autoencoder. Problemy fiziki, matematiki i tehniki, no. 3 (2024), pp. 92-100. http://geodesic.mathdoc.fr/item/PFMT_2024_3_a15/
[1] P. Dorin, C. Farcas, I. Ciocan, “Modelling and simulation of photovoltaic cells”, ACTA Technica Napocensis, 49:1 (2008), 42-47
[2] O.D. Adeniyi et al., “Modeling and simulation of energy recovery from a photovoltaic solar cell”, Nigerian J. of Technological Research, 11 (2016), 26-31 | DOI
[3] T. Salmi et al., “MATLAB/Simulink based modelling of solar photovoltaic cell”, Intern. J. of Renewable Energy Research, 2:2 (2012), 213-218
[4] G. Tina, F. Cosentino, C. Ventura, “Monitoring and diagnostics of photovoltaic power plants”, Renewable Energy in the Service of Mankind, v. 2, ed. A. Sayigh, Springer, Cham, 2016, 505-516 | DOI
[5] M. Ibbini, A. Adawi, “Analysis and design of a maximum power point tracker for a stand-alone photo voltaic system using simscape”, Intern. J. of Advanced Trends in Computer Science and Engineering, 8:1 (2019), 54-57 | DOI
[6] Md.M. Rashid, A. Habib, M. Mahdi Hasan, “Design and construction of the solar photovoltaic simulation system with the implementation of MPPT and boost converter using Matlab/Simulink”, Asian J. of Current Research, 3:1 (2018), 27-36
[7] G.-A. Leopoldo et al., “Flatness-based control for the maximum power point tracking in a photovoltaic system”, Energies, 12 (2019), 1843–1862 | DOI
[8] N. Kishor et al., “Modeling of PV module with consideration of environmental factors”, 2010 IEEE PES Innovative Smart Grid Technologies Conf. Europe (ISGT Europe) (Gothenburg, Sweden, 11-13 Oct. 2010), Gothenburg, 2010, 121-126
[9] N. Kishor et al., “Simulation of PV array output power for modified PV cell model”, 2010 IEEE Intern. Conf. on Power and Energy (Kuala Lumpur, Malaysia, 29 Nov. - 01 Dec. 2010), Kuala Lumpur, 2010, 533-538 | DOI
[10] Y. Wang et al., “Steady-state model and power flow analysis of grid-connected photovoltaic power system”, 2008 IEEE Intern. Conf. on Industrial Technology (Chengdu, China, 21-24 Apr. 2008), Chengdu, 2008, 1-6
[11] R.M. Asimov et al., “Virtual laboratory for testing of solar power plants in big data analysis”, Collection of Materials of the V Intern. Scientific and Practical Conf. “Big Data and Advanced Analytics” (Minsk, 13-14 Mar. 2019), Minsk, 2019, 61-65
[12] V.S. Asipovich, R.M. Asimov, S.V. Chernoshey, “Digital twin in the analysis of a big data”, Collection of Materials of the IV Intern. Scientific and Practical Conf. “Big Data and Advanced Analytics” (Minsk, 3-4 May 2018), Minsk, 2018, 69-78 | MR
[13] S. Valevich et al., “Digital twin for PV module fault detection”, J. of Engineering Science, XXVII:4 (2020), 80–87
[14] R. M. Asimov et al., “Digital twin for PV plant's power generation analysis”, Collection of Materials of the VI Intern. Scientific and Practical Conf. “Big Data and Advanced Analytics” (Minsk, 20-21 May 2020), Minsk, 2020, 78-88
[15] M. Mansouri, M. Trabelsi, H. Nounou, M. Nounou, “Deep Learning-Based Fault Diagnosis of Photovoltaic Systems: A Comprehensive Review and Enhancement Prospects”, IEEE Access, 9 (2021), 126286–126306 | DOI
[16] M. Jaber, A. Sufiyan, A. Hamid, K. Sopian, A. Fazlizan, A. Ibrahim, “Prediction Model for the Performance of Different PV Modules Using Artificial Neural Networks”, Appl. Sci., 12 (2022), 3349 | DOI
[17] Y. Zhang, C. Qin, A.K. Srivastava, C. Jin, R.K. Sharma, “Data-Driven Day-Ahead PV Estimation Using Autoencoder-LSTM and Persistence Model”, IEEE Transactions on Industry Applications, 56:6 (2020), 7185–7192 | DOI
[18] M. Ibrahim, A. Alsheikh, F.M. Awaysheh, M.D. Alshehri, “Machine Learning Schemes for Anomaly Detection in Solar Power Plants”, Energies, 15 (2022), 1082 | DOI
[19] S. V. Valevich i dr., “Informatsionnoe obespechenie monitoringa tekhnicheskogo sostoyaniya solnechnykh elektrostantsii”, Informatsionnye tekhnologii, 26:10 (2020), 594-601
[20] K.S. Dik, “Metodika poiska defektnykh solnechnykh panelei v dannykh telemetrii elektrostantsii na osnove rezultatov raboty tsifrovogo dvoinika”, Doklady BGUIR, 21:6 (2023), 113-120
[21] K.S. Dzik et al., “Methods and software tool for automating static and dynamic search for anomalies in telemetry data of a solar power plant”, International Journal of Advanced Research, 11:8 (2023), 143-155 | DOI