Rayleigh--Jeans approximation in the infrared range of thermal radiation of stars
Problemy fiziki, matematiki i tehniki, no. 2 (2024), pp. 39-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper provides a quantitative assessment of the effectiveness of the Rayleigh–Jeans approximation for the thermal radiation of stars in the infrared region of the spectrum. For a number of fixed temperatures, the relative deviations of the Rayleigh – Jeans spectral density from the Planck one at the edges of the NIR, MIR and FIR ranges are calculated. For the same ranges, the relative deviations of emissivities, luminosities and fluxes are also determined. The efficiency of the approximation for some stars is assessed as well.
Keywords: infrared radiation, spectral density, Rayleigh–Jeans formula, relative deviation, luminosity.
Mots-clés : Planck curve
@article{PFMT_2024_2_a6,
     author = {O. V. Novikova and G. Yu. Tyumenkov},
     title = {Rayleigh--Jeans approximation in the infrared range of thermal radiation of stars},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {39--42},
     publisher = {mathdoc},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2024_2_a6/}
}
TY  - JOUR
AU  - O. V. Novikova
AU  - G. Yu. Tyumenkov
TI  - Rayleigh--Jeans approximation in the infrared range of thermal radiation of stars
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2024
SP  - 39
EP  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2024_2_a6/
LA  - ru
ID  - PFMT_2024_2_a6
ER  - 
%0 Journal Article
%A O. V. Novikova
%A G. Yu. Tyumenkov
%T Rayleigh--Jeans approximation in the infrared range of thermal radiation of stars
%J Problemy fiziki, matematiki i tehniki
%D 2024
%P 39-42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2024_2_a6/
%G ru
%F PFMT_2024_2_a6
O. V. Novikova; G. Yu. Tyumenkov. Rayleigh--Jeans approximation in the infrared range of thermal radiation of stars. Problemy fiziki, matematiki i tehniki, no. 2 (2024), pp. 39-42. http://geodesic.mathdoc.fr/item/PFMT_2024_2_a6/

[1] E.V. Kononovich, V.I. Moroz, Obschii kurs astronomii, URSS, M., 2022, 544 pp.

[2] B.W. Carroll, D.A. Ostlie, An Introduction to Modern Astrophysics, Pearson International Edition, San Francisco, 2007, 1351 pp. | MR

[3] W. Schmidt, M. Volschow, Numerical Python in Astronomy and Astrophysics, Springer, Cham, Switzerland, 2021, 260 pp.

[4] Near, Mid Far Infrared, (Date of access: 13.03.2024) http://www.ipac.caltech.edu/outreach/Edu/Regions/irregions.html/

[5] W.A. Holmes, T. Chui, D. Johnson et al., “Cooling Systems for Far-Infrared Telescopes and Instruments”, Astronomy, 2010 (2009), 13–23

[6] L. Labadie, O. Wallner, “Mid-Infrared Guided Optics: a Perspective for Astronomical Instruments”, Optics Express, 17 (2009), 1947–1962 | DOI

[7] Near Infrared Camera, (Date of access: 09.04.2024) http://www.stsci.edu/jwst/instruments/nircam/

[8] NASA's Webb Delivers Deepest Infrared Image of Universe Yet, (Date of access: 31.03.2024) https://www.nasa.gov/image-article/nasaswebb-delivers-deepest-infrared-image-of-universe-yet/

[9] Microshutters, (Date of access: 01.04.2024) https://www.jwst.nasa.gov/content/about/innovations/microshutters.html/

[10] S. Wolfram, Metamathematics: Foundations Physicalization, Wolfram Media Inc., New York, 2022, 190 pp.