Flexible multilayer electromagnetic radiation absorbers with an ordered structured intermediate layer based on aluminum shavings
Problemy fiziki, matematiki i tehniki, no. 2 (2024), pp. 16-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

A technology for manufacturing low-cost flexible multilayer microwave absorbers is proposed. The low cost of the absorbers is due to the fact that they contain aluminum shavings, which are a production waste. The second layer of the absorbers is made from these shavings. This is realized by forming from it the elements characterized by the same shape and size, and fixing these elements with the same step between the first and third layers made from synthetic non-woven fiber material. It has been established that electromagnetic radiation absorption coefficient values of the absorbers manufactured in accordance with the presented technology reach a value of 0.9 in the frequency range of 2.0–17.0 GHz, and the width of their effective absorption band is 140.0%.
Keywords: aluminum shavings, electromagnetic radiation absorber, effective absorption band.
Mots-clés : absorption coefficient
@article{PFMT_2024_2_a2,
     author = {O. V. Boiprav and V. S. Chelyadinsky and L. M. Lynkou and M. V. Tumilovich},
     title = {Flexible multilayer electromagnetic radiation absorbers with an ordered structured intermediate layer based on aluminum shavings},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {16--21},
     publisher = {mathdoc},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2024_2_a2/}
}
TY  - JOUR
AU  - O. V. Boiprav
AU  - V. S. Chelyadinsky
AU  - L. M. Lynkou
AU  - M. V. Tumilovich
TI  - Flexible multilayer electromagnetic radiation absorbers with an ordered structured intermediate layer based on aluminum shavings
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2024
SP  - 16
EP  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2024_2_a2/
LA  - ru
ID  - PFMT_2024_2_a2
ER  - 
%0 Journal Article
%A O. V. Boiprav
%A V. S. Chelyadinsky
%A L. M. Lynkou
%A M. V. Tumilovich
%T Flexible multilayer electromagnetic radiation absorbers with an ordered structured intermediate layer based on aluminum shavings
%J Problemy fiziki, matematiki i tehniki
%D 2024
%P 16-21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2024_2_a2/
%G ru
%F PFMT_2024_2_a2
O. V. Boiprav; V. S. Chelyadinsky; L. M. Lynkou; M. V. Tumilovich. Flexible multilayer electromagnetic radiation absorbers with an ordered structured intermediate layer based on aluminum shavings. Problemy fiziki, matematiki i tehniki, no. 2 (2024), pp. 16-21. http://geodesic.mathdoc.fr/item/PFMT_2024_2_a2/

[1] A.I. Kaya et al., “Design and Manufacture of Electromagnetic Absorber Composed of Boric Acid-Incorporated Wastepaper Composites”, Turkish Journal of Electrical Engineering and Computer Sciences, 30:3 (2022), 23 | DOI

[2] R. Tan et al., “A Low-Cost Lightweight Microwave Absorber: Silicon Carbide Synthesized from Tissue”, Ceramics International, 47:2 (2021), 2077–2085 | DOI | MR

[3] C.F. Jung et al., “Product Design from Waste: A Novel EcoEfficient Pyramidal Microwave Absorber Using Rice Husks and Medium Density Fibreboard Residues”, Waste Management, 119 (2021), 91–100 | DOI

[4] S.S. Pattanayak, S.H. Laskar, S. Sahoo, “Design From Waste: an Eco-Efficient Microwave Absorber Using Dried Banana Leaves and Charcoal Based Composite”, Journal of Materials Science: Materials in Electronics, 33:19 (2022), 13398–13407 | DOI

[5] N.H.H. bin Lailan, F.M. Idris, “Electromagnetic Wave Absorbing Performance of Activated Carbon Based Agricultural Waste - A Review”, Proceeding Insan Junior Researchers International Conference 2021, iJURECON 2021 (Malaysia, 15–17 October 2021), 95–98

[6] H. Ayad, O. Boiprav, L. Lynkou, Electromagnetic Shields Based on Powdered Coal-Containing Materials, ed. L. Lynkou, Bestprint, Minsk, 2020, 122 pp.

[7] H. Ali et al., “Microwave Absorption Property of Coffee Waste Bio-Carbon Modified by Industrial Waste MnFe$_2$O$_4$ Particles”, Journal of Materials Research and Technology, 9:6 (2020), 12869–12879 | DOI

[8] F. Malek, H. Nornikman, O. Nadiah, “Pyramidal Microwave Absorber Design From Waste Material Using Rice Husk and Rubber Tire Dust”, Journal of Telecommunication, Electronic and Computer Engineering, 4:1 (2015), 23–30

[9] A. Kumar Dash, G. Nath, “Development of Microwave Absorbing Material with Organic Waste based Epoxy Blended Composite”, Indian Journal of Pure Applied Physics, 60 (2022), 482–488

[10] S. Gupta, G. Deep, “Agricultural Waste Based-Coco Peat and Coconut Shell Activated Carbon Microwave Absorber”, 2016 IEEE MTT-S International Microwave and RF Conference (IMaRC) (India, 5–9 December 2016), 1–4 | DOI

[11] B. Lou, “Microwave Absorption Ability of Steel Slag and Road Performance of Asphalt Mixtures Incorporating Steel Slag”, Materials, 13:3 (2020), 663 | DOI

[12] M.R.N. Neamakh i dr., Radioekraniruyuschie modulnye konstruktsii na osnove poroshkoobraznykh materialov, ed. L. M. Lynkov, Bestprint, Minsk, 2013, 182 pp.

[13] Y. Lamri et al., “Glass Foam Composites Based on Tire's Waste for Microwave Absorption Application”, Journal of Non-Crystalline Solids, 537 (2020), 120017 | DOI

[14] H. Habib, “An Ecofriendly, Cost-Effective, Lightweight Microwave Absorber Based on Waste Toner”, Journal of Electronic Materials, 50 (2021), 2049–2056 | DOI

[15] A. Verma, “Development of E-Waste Based Composite Microwave Absorbing Material”, Defence Science Journal, 71:3 (2021), 365–371 | DOI

[16] V. S. Asadchy et al., “Broadband Reflectionless Metasheets: Frequency-Selective Transmission and Perfect Absorption”, Physical Review X, 5:3 (2015), 031005 | DOI

[17] O.V. Boiprav, N.V. Bogush, “Usovershenstvovannaya tekhnologiya izgotovleniya chastotno-selektivnykh elektromagnitnykh ekranov SVCh-diapazona, soderzhaschikh spiralevidnye elementy”, Izvestiya vysshikh uchebnykh zavedenii. Materialy elektronnoi tekhniki, 26:1 (2023), 46–55

[18] R.S. Anwar, L. Mao, H. Ning, “Frequency Selective Surfaces: A Review”, Applied Sciences, 8:9 (2018), 1689 | DOI

[19] Avinash, N. Gupta, “Low-Cost Electromagnetic Absorbers for Shield Packaging”, IEEE Transactions on Components, Packaging and Manufacturing Technology, 13:3 (2023), 374–381 | DOI

[20] A. Singh, C. Singh, “Quad-Band FSS for Electromagnetic Shielding”, International Journal of Computer Communication and Informatics, 3:1 (2021), 1–14 | DOI | MR | Zbl

[21] O. Boiprav et al., “Charcoal- and Foil-Containing Materials for Radio Electronic Control Systems Protection from Electromagnetic Interferences”, 2022 IEEE 21st international Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA) (Tunisia, 19–21 December 2021), 299–304

[22] U. Hwang et al., Quantitative Interpretation of Electromagnetic Interference Shielding Efficiency: Is It Really a Wave Absorber or a Reflector?, ACS Omega, 7:5 (2022), 4135–4139 | DOI

[23] B. Gaoui, A. Hadjadj, M. Kious, “Enhancement of the Shielding Effectiveness of Multilayer Materials by Gradient Thickness in the Stacked Layers”, Journal of Materials Science: Materials in Electronics, 28 (2017), 11292–11299 | DOI

[24] N.A. Bei, V.A. Vechtomov, V.N. Zimin, Antenny sistem sputnikovoi svyazi i navigatsii, Rudomino, M., 2010, 220 pp.

[25] A. Makalesi, “An Easily Optimizable Frequency Selective Absorber Design for X-Band”, Afyon Kocatepe University Journal of Science and Engineering, 22 (2022), 136–141 | DOI