Application of Kaczmarz method for solving inverse modelling problems of magnetic-abrasive finishing process of planar surfaces
Problemy fiziki, matematiki i tehniki, no. 2 (2024), pp. 90-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers the solution technique for inverse modelling problems of magnetic-abrasive finishing of planar surfaces. The solution of the problem enables the determination of control law of the pressure exerted onto the workpiece needed for realization of material removal according to the prescribed function. The problem is posed in matrix form on the basis of Preston’s equation, and the corresponding linear system of equations is solved using iterative Kaczmarz method. On the basis of numerical examples it is shown that pressure control during machining enables sufficiently precise (with deviation no more than 2.2 as the removal function providing compensation of initial shape errors of the workpiece.
Keywords: magnetic-abrasive finishing, uniformity of material removal, Preston’s equation, inverse problems, Kaczmarz method.
@article{PFMT_2024_2_a15,
     author = {D. A. Stepanenko and E. S. Eromin},
     title = {Application of {Kaczmarz} method for solving inverse modelling problems of magnetic-abrasive finishing process of planar surfaces},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {90--98},
     publisher = {mathdoc},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2024_2_a15/}
}
TY  - JOUR
AU  - D. A. Stepanenko
AU  - E. S. Eromin
TI  - Application of Kaczmarz method for solving inverse modelling problems of magnetic-abrasive finishing process of planar surfaces
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2024
SP  - 90
EP  - 98
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2024_2_a15/
LA  - ru
ID  - PFMT_2024_2_a15
ER  - 
%0 Journal Article
%A D. A. Stepanenko
%A E. S. Eromin
%T Application of Kaczmarz method for solving inverse modelling problems of magnetic-abrasive finishing process of planar surfaces
%J Problemy fiziki, matematiki i tehniki
%D 2024
%P 90-98
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2024_2_a15/
%G ru
%F PFMT_2024_2_a15
D. A. Stepanenko; E. S. Eromin. Application of Kaczmarz method for solving inverse modelling problems of magnetic-abrasive finishing process of planar surfaces. Problemy fiziki, matematiki i tehniki, no. 2 (2024), pp. 90-98. http://geodesic.mathdoc.fr/item/PFMT_2024_2_a15/

[1] T. Yatsui et al., “Challenges in realizing ultraflat materials surfaces”, Beilstein Journal of Nanotechnology, 4 (2013), 875–885 | DOI

[2] U. Griesmann et al., “Manufacture and metrology of 300 mm silicon wafers with ultra-low thickness variation”, AIP Conference Proceedings, 931, 2007, 105–110 | DOI

[3] M. Srivastava et al., “Review on the various strategies adopted for the polishing of silicon wafer — A chemical perspective”, Materials Today: Proceedings, 63 (2022), 62–68 | DOI

[4] Z. Geng et al., “Polishing approaches at atomic and close-toatomic scale”, Micromachines, 14 (2023), 343 | DOI

[5] N.S. Khomich, Magnitno-abrazivnaya obrabotka izdelii, BNTU, Minsk, 2006, 217 pp.

[6] D.A. Stepanenko, E.S. Eromin, “Obespechenie ravnomernosti s'ema pripuska pri magnitno-abrazivnoi finishnoi obrabotke poluprovodnikovykh plastin za schet upravleniya rezhimami protsessa obrabotki”, Nauka i tekhnika, 2023, no. 6, 477–486 | Zbl

[7] N.S. Khomich i dr., “Modelirovanie kinematiki protsessa magnitno-abrazivnogo polirovaniya kremnievykh plastin”, Vestnik BNTU, 2009, no. 1, 32–38

[8] Y. Zhang, Y. Zou, “Study on corrective abrasive finishing for workpiece surface by using magnetic abrasive finishing processes”, Machines, 10 (2022), 98 | DOI | Zbl

[9] J. Luo, D. Dornfeld, Integrated Modeling of Chemical Mechanical Planarization for Sub-Micron IC Fabication, Springer, Berlin, 2004, 311 pp.

[10] X. He et al., “Modeling of material removal in magnetic finishing based on Maxwell's stress tensor theory and its experimental validation”, Journal of Materials Processing Technology, 312 (2023), 117808 | DOI

[11] C.L. Byrne, Iterative Algorithms in Inverse Problems, Chapman Hall / CRC, N.Y., 2014, 300 pp.

[12] J.K. Older, P.C. Johns, “Matrix formulation of computed tomogram reconstruction”, Physics in Medicine and Biology, 38 (1993), 1051–1064 | DOI

[13] R. Sznajder, “Kaczmarz algorithm revisited”, Czasopismo Techniczne. Nauki Podstawowe, 2015, no. 2-NP, 247–254

[14] C. Popa, “Constrained Kaczmarz extended algorithm for image reconstruction”, Linear Algebra and its Applications, 429 (2008), 2247–2267 | DOI | MR | Zbl

[15] C. Bouvier, Investigation of polishing algorithms and removal processes for a deterministic subaperture polisher, PhD thesis, University of Rochester, 2007, 272 pp.

[16] T. Elfving et al., “Semi-convergence properties of Kaczmarz's method”, Inverse Problems, 30 (2014), 055007 | DOI | MR | Zbl

[17] D.A. Stepanenko, “Modeling of spraying with time-dependent material feed rate”, Applied Mathematical Modelling, 31 (2007), 2564–2576 | DOI | Zbl