On the absence, non-uniqueness, and blow-up of classical solutions of mixed problems for the telegraph equation with a nonlinear potential
Problemy fiziki, matematiki i tehniki, no. 2 (2024), pp. 73-78

Voir la notice de l'article provenant de la source Math-Net.Ru

For the telegraph equation with a nonlinear potential given in the first quadrant, we consider the first and the second mixed problem, for which we study issues related to the absence, non-uniqueness, and blow-up of classical solutions.
Keywords: semilinear wave equation, mixed problem, classical solution, non-uniqueness of solution, blow-up of solution, method of characteristics, energy methods, matching conditions.
Mots-clés : absence of solution
@article{PFMT_2024_2_a12,
     author = {V. I. Korzyuk and J. V. Rudzko},
     title = {On the absence, non-uniqueness, and blow-up of classical solutions of mixed problems for the telegraph equation with a nonlinear potential},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {73--78},
     publisher = {mathdoc},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2024_2_a12/}
}
TY  - JOUR
AU  - V. I. Korzyuk
AU  - J. V. Rudzko
TI  - On the absence, non-uniqueness, and blow-up of classical solutions of mixed problems for the telegraph equation with a nonlinear potential
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2024
SP  - 73
EP  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2024_2_a12/
LA  - en
ID  - PFMT_2024_2_a12
ER  - 
%0 Journal Article
%A V. I. Korzyuk
%A J. V. Rudzko
%T On the absence, non-uniqueness, and blow-up of classical solutions of mixed problems for the telegraph equation with a nonlinear potential
%J Problemy fiziki, matematiki i tehniki
%D 2024
%P 73-78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2024_2_a12/
%G en
%F PFMT_2024_2_a12
V. I. Korzyuk; J. V. Rudzko. On the absence, non-uniqueness, and blow-up of classical solutions of mixed problems for the telegraph equation with a nonlinear potential. Problemy fiziki, matematiki i tehniki, no. 2 (2024), pp. 73-78. http://geodesic.mathdoc.fr/item/PFMT_2024_2_a12/