On some groups from the formation of supersoluble finite groups
Problemy fiziki, matematiki i tehniki, no. 2 (2024), pp. 64-69

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, for a maximal subgroup of a group $G$, the concept of an $n$-modularly embedded subgroup ($n$ is some natural number) is introduced. A criterion is established under which every maximal subgroup in $G$ is $n$-modularly embedded, as well as necessary and sufficient conditions under which in every subgroup $A$ of $G$ any maximal subgroup is $n$-modularly embedded in $A$ for some natural number $n$, $n\leqslant k$ ($k$ — fixed natural number).
Keywords: supersoluble group, maximal subgroup, $n$-modularly embedded subgroup, Schunck class.
@article{PFMT_2024_2_a10,
     author = {T. I. Vasilyeva},
     title = {On some groups from the formation of supersoluble finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {64--69},
     publisher = {mathdoc},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2024_2_a10/}
}
TY  - JOUR
AU  - T. I. Vasilyeva
TI  - On some groups from the formation of supersoluble finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2024
SP  - 64
EP  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2024_2_a10/
LA  - en
ID  - PFMT_2024_2_a10
ER  - 
%0 Journal Article
%A T. I. Vasilyeva
%T On some groups from the formation of supersoluble finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2024
%P 64-69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2024_2_a10/
%G en
%F PFMT_2024_2_a10
T. I. Vasilyeva. On some groups from the formation of supersoluble finite groups. Problemy fiziki, matematiki i tehniki, no. 2 (2024), pp. 64-69. http://geodesic.mathdoc.fr/item/PFMT_2024_2_a10/