On some groups from the formation of supersoluble finite groups
Problemy fiziki, matematiki i tehniki, no. 2 (2024), pp. 64-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, for a maximal subgroup of a group $G$, the concept of an $n$-modularly embedded subgroup ($n$ is some natural number) is introduced. A criterion is established under which every maximal subgroup in $G$ is $n$-modularly embedded, as well as necessary and sufficient conditions under which in every subgroup $A$ of $G$ any maximal subgroup is $n$-modularly embedded in $A$ for some natural number $n$, $n\leqslant k$ ($k$ — fixed natural number).
Keywords: supersoluble group, maximal subgroup, $n$-modularly embedded subgroup, Schunck class.
@article{PFMT_2024_2_a10,
     author = {T. I. Vasilyeva},
     title = {On some groups from the formation of supersoluble finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {64--69},
     publisher = {mathdoc},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2024_2_a10/}
}
TY  - JOUR
AU  - T. I. Vasilyeva
TI  - On some groups from the formation of supersoluble finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2024
SP  - 64
EP  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2024_2_a10/
LA  - en
ID  - PFMT_2024_2_a10
ER  - 
%0 Journal Article
%A T. I. Vasilyeva
%T On some groups from the formation of supersoluble finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2024
%P 64-69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2024_2_a10/
%G en
%F PFMT_2024_2_a10
T. I. Vasilyeva. On some groups from the formation of supersoluble finite groups. Problemy fiziki, matematiki i tehniki, no. 2 (2024), pp. 64-69. http://geodesic.mathdoc.fr/item/PFMT_2024_2_a10/

[1] B. Huppert, Endliche Gruppen, v. I, Springer, Berlin, 1967, 795 pp. | MR | Zbl

[2] R. Schmidt, “Modulare Untergruppen endlicher Gruppen”, J. Ill. Math., 13 (1969), 358–377 | MR | Zbl

[3] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New-York, 1992, 891 pp. | MR

[4] A. Ballester-Bolinches, L.M. Ezquerro, Classes of Finite Groups, Springer-Verlag, 2006, 385 pp. | MR | Zbl

[5] H.G. Bray and others, Between Nilpotent and Solvable, ed. M. Weinstein, Polugonal Publishing House, Passaic, 1982, 240 pp. | MR | Zbl

[6] R. Schmidt, Subgroup Lattices of Groups, Walter de Gruyter, Berlin etc, 1994, 572 pp. | MR | Zbl

[7] N. Ito, “Note on (LM)-groups of finite order”, Kodai Math. Sem. Reports, 1951, 1–6 | MR | Zbl

[8] A.F. Vasilev, T.I. Vasileva, V.N. Tyutyanov, “O $\mathrm{K}$-$\mathbb{P}$-subnormalnykh podgruppakh konechnykh grupp”, Mat. zametki, 95:4 (2014), 517-528 | DOI | Zbl

[9] A.F. Vasilev, T.I. Vasileva, V.N. Tyutyanov, “O konechnykh gruppakh sverkhrazreshimogo tipa”, Sib. mat. zhurn., 51:6 (2010), 1270–1281 | Zbl

[10] V.S. Monakhov, I.L. Sokhor, “Finite groups with formational subnormal primapy subgroups of bounded exponent”, Sib. elektron. matem. izv., 20:2 (2023), 785–796 | MR