Rational approximations of Laurent series
Problemy fiziki, matematiki i tehniki, no. 1 (2024), pp. 68-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

А new scheme for approximating Laurent series with rational functions is investigated. The concept of a generalized polynomial is introduced, and building upon this, a corresponding Padé problem for the Laurent series is formulated and solved. A constructive solution to this problem enables the determination of rational functions, which are then considered as Padé approximations of the Laurent series. It has been established that in the simplest case, these specific Padé approximations of the Laurent series behave similarly to the classical Padé approximations of power series: they localize the singular points of the function that is the sum of the Laurent series.
Keywords: Padé polynomials, power series, Fabry’s theorem.
Mots-clés : Laurent series, Padé–Laurent problem
@article{PFMT_2024_1_a9,
     author = {A. P. Starovoitov and N. V. Ryabchenko},
     title = {Rational approximations of {Laurent} series},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {68--73},
     publisher = {mathdoc},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2024_1_a9/}
}
TY  - JOUR
AU  - A. P. Starovoitov
AU  - N. V. Ryabchenko
TI  - Rational approximations of Laurent series
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2024
SP  - 68
EP  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2024_1_a9/
LA  - ru
ID  - PFMT_2024_1_a9
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%A N. V. Ryabchenko
%T Rational approximations of Laurent series
%J Problemy fiziki, matematiki i tehniki
%D 2024
%P 68-73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2024_1_a9/
%G ru
%F PFMT_2024_1_a9
A. P. Starovoitov; N. V. Ryabchenko. Rational approximations of Laurent series. Problemy fiziki, matematiki i tehniki, no. 1 (2024), pp. 68-73. http://geodesic.mathdoc.fr/item/PFMT_2024_1_a9/

[1] Dzh. Beiker ml., P. Greivs-Morris, Approksimatsii Pade, v. 1, Osnovy teorii, Mir, M., 1986; т. 2, Обобщения и приложения

[2] E.M. Nikishin, V.N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988

[3] A.P. Starovoitov, N.V. Ryabchenko, “O determinantnykh predstavleniyakh mnogochlenov Ermita–Pade”, Trudy Moskovskogo matematicheskogo obschestva, 83, no. 1, 2022, 17–35

[4] L. Biberbakh, Analiticheskoe prodolzhenie, Nauka, M., 1967

[5] W.B. Gragg; Eds. E.B. Saff, R.S. Varga, “Laurent, Fourier and Chebyshev-Padé tables”, Padé and Rational Approximation, Academic Press, 1977, 61–72 | DOI | MR

[6] J.S.R. Chisholm, A.K. Common, “Generalisations of Padé Approximation for Chebyshev and Fourier Series”, Proc. 1979 Int. Christoffel Symposium, ed. P.L. Butzer, Birkhlluser Verlag, Springer Basel AG, Basel, 1981, 212–231 | MR

[7] W.B. Gragg, G.D. Johnson, “The Laurent-Padé tables, Fourier and Chebyshev-Padé tables”, Proc. I.F.I.P. Congress 74, North Holland, 1974, 632–637 | MR

[8] E.W. Cheney, Introduction to Approximation Theory, McGraw-Hill Book Company, 1966 | MR | Zbl

[9] J. Fleischer, “Analytic continuation of scattering amplitudes and Padé approximants”, Nuclear Physics B, 37:1 (1972), 59–76 | DOI | MR

[10] J. Fleischer, “Nonlinear pade approximants for legendre series”, J. Math. Phys., 14 (1973), 246–248 | DOI | MR | Zbl

[11] G. Frobenious, “Ueber Relationen zwischen den Naherung-sbruchen von Potenzreihen”, Journal für die reine und angewandte Mathematik, 90 (1881), 1–17 | DOI | MR

[12] V.V. Vavilov, G.L. Lopes, V.A. Prokhorov, “Ob odnoi obratnoi zadache dlya strok tablitsy Pade”, Matematicheskii sbornik, 152:1 (1979), 117–127 | Zbl

[13] S.P. Suetin, “O polyusakh $m$-i stroki tablitsy Pade”, Matematicheskii sbornik, 120 (162):4 (1983), 500–504 | Zbl

[14] S.P. Suetin, “Ob odnoi obratnoi zadache dlya m-i stroki tablitsy Pade”, Matematicheskii sbornik, 124 (166):2 (1984), 238–250 | Zbl