Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2024_1_a6, author = {M. A. Yarmolenko and Jiang Xiao Homg and A. A. Rogachev and A. V. Rogachev and A. S. Rudenkov and O. A. Yarmolenko and S. A. Frolov}, title = {Molecular structure and anti-fungicidal properties of coatings based on clotrimazole and polymers formed from the active gas phase}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {50--56}, publisher = {mathdoc}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2024_1_a6/} }
TY - JOUR AU - M. A. Yarmolenko AU - Jiang Xiao Homg AU - A. A. Rogachev AU - A. V. Rogachev AU - A. S. Rudenkov AU - O. A. Yarmolenko AU - S. A. Frolov TI - Molecular structure and anti-fungicidal properties of coatings based on clotrimazole and polymers formed from the active gas phase JO - Problemy fiziki, matematiki i tehniki PY - 2024 SP - 50 EP - 56 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2024_1_a6/ LA - ru ID - PFMT_2024_1_a6 ER -
%0 Journal Article %A M. A. Yarmolenko %A Jiang Xiao Homg %A A. A. Rogachev %A A. V. Rogachev %A A. S. Rudenkov %A O. A. Yarmolenko %A S. A. Frolov %T Molecular structure and anti-fungicidal properties of coatings based on clotrimazole and polymers formed from the active gas phase %J Problemy fiziki, matematiki i tehniki %D 2024 %P 50-56 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2024_1_a6/ %G ru %F PFMT_2024_1_a6
M. A. Yarmolenko; Jiang Xiao Homg; A. A. Rogachev; A. V. Rogachev; A. S. Rudenkov; O. A. Yarmolenko; S. A. Frolov. Molecular structure and anti-fungicidal properties of coatings based on clotrimazole and polymers formed from the active gas phase. Problemy fiziki, matematiki i tehniki, no. 1 (2024), pp. 50-56. http://geodesic.mathdoc.fr/item/PFMT_2024_1_a6/
[1] D. Ronin et al., “Current and novel diagnostics for orthopedic implant biofilm infections: a review”, APMIS, 130:2 (2022), 59–81 | DOI
[2] M.A. Serbanescu, C.G. Apple, J.S. Fernandez-Moure, “Role of Resident Microbial Communities in Biofilm-Related Implant Infections: Recent Insights and Implications”, Surg Infect (Larchmt), 24:3 (2023), 258–264 | DOI
[3] E.L. Meier, Y. Jang, “Surface design strategies of polymeric biomedical implants for antibacterial properties”, Current Opinion in Biomedical Engineering, 26 (2023), 100448 | DOI
[4] H. Joo et al., “Phage and Antibiotic Combinations Reduce Staphylococcus aureus in Static and Dynamic Biofilms Grown on an Implant Material”, Viruses, 15:2 (2023), 460 | DOI
[5] Y. Zhu et al., “Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections”, Med. Res. Rev., 42:4 (2022), 1377–1422 | DOI
[6] A.V. Rogachev i dr., “Perspektivy sinteza funktsionalnykh biomaterialov iz aktivnoi gazovoi fazy”, Polimernye materialy i tekhnologii, 9:4 (2023), 97–104
[7] T. Kruk et al., “Nanocomposite multifunctional polyelectrolyte thin films with copper nanoparticles as the antimicrobial coatings”, Colloids and Surfaces B: Biointerfaces, 181 (2019), 112–118 | DOI
[8] S. Grohmann et al., “Biomimetic multilayer coatings deliver gentamicin and reduce implant-related osteomyelitis in rats”, Biomedical Engineering / Biomedizinische Technik, 15 (2018), 1–13
[9] M.A. Yarmolenko, A.A. Rogachev, P.A. Luchnikov, A.V. Rogachev, Dzhang Syan Khun, Mikro- i nanokompozitsionnye polimernye pokrytiya, osazhdaemye iz aktivnoi gazovoi fazy, Radiotekhnika, M., 2016, 424 pp.
[10] Chun He et al., “Synthesis and structure of antibacterial coatings formed by electron-beam dispersion of polyvinyl chloride in vacuum”, Surface and Coatings Technology, 354 (2018), 38–45 | DOI
[11] A.C. Liu, C.M. Friend, “The structure and reactivity of chemisorbed aromatics: Spectroscopic studies of benzene on Mo (110)”, The Journal of Chemical Physics, 89 (1988), 4398–4405
[12] T. Wang et al., “Photocatalytic removal using g-C$_3$N$_4$ quantum dots / Bi$_2$Ti$_2$O$_7$ composites”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 213 (2019), 19–27 | DOI
[13] A. Foelske-Schmitz, D. Weingarth, R. Kotz, “Quasi in situ XPS study of electrochemical oxidation and reduction of highly oriented pyrolytic graphite in [1-ethyl-3-methylimidazolium] [BF4] electrolytes”, Electrochimica Acta, 56 (2011), 10321–10331 | DOI
[14] Chun He et al., “Structure and antibacterial activity of PLA-based biodegradable nanocomposite coatings by electron beam deposition from active gas phase”, Progress in Organic Coating, 123 (2018), 282–291 | DOI
[15] Chun He et al., “Synthesis and structure of antibacterial coatings formed by electron-beam dispersion of polyvinyl chloride in vacuum”, Surface and Coatings Technology, 354 (2018), 38–45 | DOI
[16] C.A. Rodrigues et al., “Biological oxidative mechanisms for degradation of poly (lactic acid) blended with thermoplastic starch”, ACS Sustainable Chemistry Engineering, 3 (2015), 2756–2766 | DOI
[17] D. Doganay et al., “Electrical, mechanical and thermal properties of aligned silver nanowire / polylactide nanocomposite films”, Composites Part B: Engineering, 99 (2016), 288–296 | DOI
[18] S. Park et al., “Facile synthesis of polysilsesquioxane toward durable superhydrophilic / superhydrophobic coatings for medical devices”, Journal of Industrial and Engineering Chemistry, 25 (2019), 97–104 | DOI