Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2024_1_a0, author = {P. P. Andrusevich and V. M. Red'kov}, title = {Dirac like equations and generalized {Majorana} fields, intrinsic symmetries}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {7--15}, publisher = {mathdoc}, number = {1}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PFMT_2024_1_a0/} }
TY - JOUR AU - P. P. Andrusevich AU - V. M. Red'kov TI - Dirac like equations and generalized Majorana fields, intrinsic symmetries JO - Problemy fiziki, matematiki i tehniki PY - 2024 SP - 7 EP - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2024_1_a0/ LA - en ID - PFMT_2024_1_a0 ER -
P. P. Andrusevich; V. M. Red'kov. Dirac like equations and generalized Majorana fields, intrinsic symmetries. Problemy fiziki, matematiki i tehniki, no. 1 (2024), pp. 7-15. http://geodesic.mathdoc.fr/item/PFMT_2024_1_a0/
[1] P.A.M. Dirac, “Relativistic wave equations”, Proc. Roy. Soc., A155 (1936), 447–459 | Zbl
[2] M. Fierz, W. Pauli, “On relativistic wave equations for particles of arbitrary spin in an electromagnetic field”, Proc. Roy. Soc., A173 (1939), 211–232 | MR | Zbl
[3] M. Fierz, “Über die relativistische theorie kräftefreier teilchen mit beliebigem spin”, Helv. Phys. Acta, 12:1 (1939), 3–37 | DOI | Zbl
[4] H.J. Bhabha, “Relativistic wave equations for the elementary particles”, Rev. Mod. Phys., 17 (1945), 200–216 | DOI | MR
[5] Harish-Chandra, “Relativistic equations for elementary particles”, Proc. Roy. Soc., A192 (1948), 195–218 | MR | Zbl
[6] I.M. Gel'fand, A.Ya. Yaglom, “General relativistic equations and infinite-dimensional representations of the Lorentz group”, JETP, 18:8 (1948), 703–733 | MR
[7] F.I. Fedorov, “Projective operators in the theory of elementary particles”, JETP, 35 (1958), 495–498 | MR
[8] F.I. Fedorov, A.A. Bogush, “On transformation of 4-dimensional vectors”, Doklady AN BSSR, 6:11 (1962), 690–693 | MR | Zbl
[9] L.A. Shelepin, “Covariant theory of relativistic weave equations for particles with arbitrary spin”, FIAN Proceedings, USSR, 30 (1964), 253–321 | MR
[10] V.I. Fuschich, A.G. Nikitin, “On new and old symmetries of the Maxwell and Dirac equations”, Physics of Elementary Particles and Atomic Nuclei, 14:1 (1983), 5–57 | MR
[11] V.I. Fuschich, “On a new method of studying the group properties of equations of mathematical physics”, DAN USSR, 246:4 (1979), 846–850 | MR
[12] C.G. Darwin, “The electron as a vector wave”, Proc. Roy. Soc., A116 (1927), 227–253
[13] E. Kähler, “Der innere Differentialkul”, Rendiconti di math. (Roma). Ser. 5, 21:3, 4. (1962), 425–523 | MR
[14] V.I. Strazhev, I.A. Satikov, D.A. Tsionenko, The Dirac–Kähler equation. Classical field, BSU, Minsk, 2007, 195 pp.
[15] V.I. Strazhev, “On dial symmetry for vector field of general type”, Acta Physica Polonica, B9:5 (1978), 449–458 | MR
[16] A.A. Bogush, S.I. Kruglov, V.I. Strazhev, “On the group of the intrinsic symmetry for 16-component theory of vector particles”, Doclady AN BSSR, 22:10 (1978), 893–895 | MR
[17] V.I. Strazhev , V.A. Pletyuchov, “Dial symmetry of relativistic wave equations”, Acta Physica Polonica, B12:7 (1981), 651–664 | MR
[18] V.I. Strazhev, V.A. Pletyuchov, “On Dirac like relativistic wave equations”, Russian Physics Journal, 12 (1983), 38-41 | MR
[19] I.A. Satikov, V.I. Strazhev, “On quantum description of the Dirac-Kähler field”, Theoretical and Mathematical Physics, 73:1 (1987), 16–25 | DOI
[20] W. Pauli, “On the conservation of the lepton charge”, Nuovo Cimento, 6 (1957), 204–214 | DOI | MR
[21] F. Gürsey, “Connection of charge independence and barion number conservation with the Pauli transformation”, Nuovo Cimento, 8 (1957), 411–415
[22] A.S. Davydov, Quantum mechanics, Science, M., 1973, 704 pp. | MR
[23] A.A. Bogush, Introduction to field theory to gauge field theory of electroweak interactioins, Science and Tehcnics, Minsk, 1987, 359 pp. | MR
[24] Yu.B. Rumer, A.I, Fet, The theory of unitary symmetry, Science, M., 1970, 405 pp. | MR
[25] V.M. Red'kov, Fields of particles in Riemannian space-time and the Lorentz group, Belarus Science, Minsk, 2009, 400 pp. | MR