Dirac like equations and generalized Majorana fields, intrinsic symmetries
Problemy fiziki, matematiki i tehniki, no. 1 (2024), pp. 7-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

We start with the the multicomponent matrix equation $(\Gamma_\mu\partial_\mu+m)\psi=0$, and introduce the concept of the intrinsic symmetry. These symmetries should preserve the form of the basic equation. The relevant Lagrangian should be invariant under the intrinsic symmetry transformation. We will impose one additional requirement on symmetry transformations: such transformations should preserve the Majorana nature of the fields. This means that if the function $\Psi_A$ is real (imaginary) part of the wave function, then after symmetry transformation the function remains real (imaginary). The situation for massless field $\Gamma_\mu\partial_\mu\psi=0$ is substantially different. The Lagrangian invariance with respect to intrinsic symmetry transformation for massless case coincide with that for massive case. The main accent will be done on multicomponent Majorana fields, which can be related to one, two, three and four Dirac fields.
Keywords: generalized Dirac and Majorana fields, Lagrangian formalism, intrinsic symmetry.
@article{PFMT_2024_1_a0,
     author = {P. P. Andrusevich and V. M. Red'kov},
     title = {Dirac like equations and generalized {Majorana} fields, intrinsic symmetries},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {7--15},
     publisher = {mathdoc},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2024_1_a0/}
}
TY  - JOUR
AU  - P. P. Andrusevich
AU  - V. M. Red'kov
TI  - Dirac like equations and generalized Majorana fields, intrinsic symmetries
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2024
SP  - 7
EP  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2024_1_a0/
LA  - en
ID  - PFMT_2024_1_a0
ER  - 
%0 Journal Article
%A P. P. Andrusevich
%A V. M. Red'kov
%T Dirac like equations and generalized Majorana fields, intrinsic symmetries
%J Problemy fiziki, matematiki i tehniki
%D 2024
%P 7-15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2024_1_a0/
%G en
%F PFMT_2024_1_a0
P. P. Andrusevich; V. M. Red'kov. Dirac like equations and generalized Majorana fields, intrinsic symmetries. Problemy fiziki, matematiki i tehniki, no. 1 (2024), pp. 7-15. http://geodesic.mathdoc.fr/item/PFMT_2024_1_a0/

[1] P.A.M. Dirac, “Relativistic wave equations”, Proc. Roy. Soc., A155 (1936), 447–459 | Zbl

[2] M. Fierz, W. Pauli, “On relativistic wave equations for particles of arbitrary spin in an electromagnetic field”, Proc. Roy. Soc., A173 (1939), 211–232 | MR | Zbl

[3] M. Fierz, “Über die relativistische theorie kräftefreier teilchen mit beliebigem spin”, Helv. Phys. Acta, 12:1 (1939), 3–37 | DOI | Zbl

[4] H.J. Bhabha, “Relativistic wave equations for the elementary particles”, Rev. Mod. Phys., 17 (1945), 200–216 | DOI | MR

[5] Harish-Chandra, “Relativistic equations for elementary particles”, Proc. Roy. Soc., A192 (1948), 195–218 | MR | Zbl

[6] I.M. Gel'fand, A.Ya. Yaglom, “General relativistic equations and infinite-dimensional representations of the Lorentz group”, JETP, 18:8 (1948), 703–733 | MR

[7] F.I. Fedorov, “Projective operators in the theory of elementary particles”, JETP, 35 (1958), 495–498 | MR

[8] F.I. Fedorov, A.A. Bogush, “On transformation of 4-dimensional vectors”, Doklady AN BSSR, 6:11 (1962), 690–693 | MR | Zbl

[9] L.A. Shelepin, “Covariant theory of relativistic weave equations for particles with arbitrary spin”, FIAN Proceedings, USSR, 30 (1964), 253–321 | MR

[10] V.I. Fuschich, A.G. Nikitin, “On new and old symmetries of the Maxwell and Dirac equations”, Physics of Elementary Particles and Atomic Nuclei, 14:1 (1983), 5–57 | MR

[11] V.I. Fuschich, “On a new method of studying the group properties of equations of mathematical physics”, DAN USSR, 246:4 (1979), 846–850 | MR

[12] C.G. Darwin, “The electron as a vector wave”, Proc. Roy. Soc., A116 (1927), 227–253

[13] E. Kähler, “Der innere Differentialkul”, Rendiconti di math. (Roma). Ser. 5, 21:3, 4. (1962), 425–523 | MR

[14] V.I. Strazhev, I.A. Satikov, D.A. Tsionenko, The Dirac–Kähler equation. Classical field, BSU, Minsk, 2007, 195 pp.

[15] V.I. Strazhev, “On dial symmetry for vector field of general type”, Acta Physica Polonica, B9:5 (1978), 449–458 | MR

[16] A.A. Bogush, S.I. Kruglov, V.I. Strazhev, “On the group of the intrinsic symmetry for 16-component theory of vector particles”, Doclady AN BSSR, 22:10 (1978), 893–895 | MR

[17] V.I. Strazhev , V.A. Pletyuchov, “Dial symmetry of relativistic wave equations”, Acta Physica Polonica, B12:7 (1981), 651–664 | MR

[18] V.I. Strazhev, V.A. Pletyuchov, “On Dirac like relativistic wave equations”, Russian Physics Journal, 12 (1983), 38-41 | MR

[19] I.A. Satikov, V.I. Strazhev, “On quantum description of the Dirac-Kähler field”, Theoretical and Mathematical Physics, 73:1 (1987), 16–25 | DOI

[20] W. Pauli, “On the conservation of the lepton charge”, Nuovo Cimento, 6 (1957), 204–214 | DOI | MR

[21] F. Gürsey, “Connection of charge independence and barion number conservation with the Pauli transformation”, Nuovo Cimento, 8 (1957), 411–415

[22] A.S. Davydov, Quantum mechanics, Science, M., 1973, 704 pp. | MR

[23] A.A. Bogush, Introduction to field theory to gauge field theory of electroweak interactioins, Science and Tehcnics, Minsk, 1987, 359 pp. | MR

[24] Yu.B. Rumer, A.I, Fet, The theory of unitary symmetry, Science, M., 1970, 405 pp. | MR

[25] V.M. Red'kov, Fields of particles in Riemannian space-time and the Lorentz group, Belarus Science, Minsk, 2009, 400 pp. | MR