Reduced thermodynamic coefficients in the theory of real gases
Problemy fiziki, matematiki i tehniki, no. 4 (2023), pp. 20-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the use of equations of state of real gases, analytical expressions for their physical parameters (thermodynamic coefficients) expressed in the reduced variables are obtained. The Peng–Robinson equation, Ishikawa–Chung–Lu equation and Fogelson–Likhachev equation are considered.
Mots-clés : thermodynamic coefficient, Vogelson–Likhachev equation.
Keywords: reduced variables, real gas equation of state, Peng–Robinson equation, Ishikawa–Chung–Lu equation
@article{PFMT_2023_4_a2,
     author = {E. A. Dey and G. Yu. Tyumenkov},
     title = {Reduced thermodynamic coefficients in the theory of real gases},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {20--24},
     publisher = {mathdoc},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2023_4_a2/}
}
TY  - JOUR
AU  - E. A. Dey
AU  - G. Yu. Tyumenkov
TI  - Reduced thermodynamic coefficients in the theory of real gases
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2023
SP  - 20
EP  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2023_4_a2/
LA  - ru
ID  - PFMT_2023_4_a2
ER  - 
%0 Journal Article
%A E. A. Dey
%A G. Yu. Tyumenkov
%T Reduced thermodynamic coefficients in the theory of real gases
%J Problemy fiziki, matematiki i tehniki
%D 2023
%P 20-24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2023_4_a2/
%G ru
%F PFMT_2023_4_a2
E. A. Dey; G. Yu. Tyumenkov. Reduced thermodynamic coefficients in the theory of real gases. Problemy fiziki, matematiki i tehniki, no. 4 (2023), pp. 20-24. http://geodesic.mathdoc.fr/item/PFMT_2023_4_a2/

[1] Yu.B. Rumer, M.Sh. Ryvkin, Termodinamika, statisticheskaya fizika i kinetika, Izdatelstvo Novosibirskogo universiteta, Novosibirsk, 2000, 608 pp.

[2] V.A. Kudinov, E.M. Kartashov, E.V. Stefanyuk, Tekhnicheskaya termodinamika i teploperedacha, Izdatelstvo Yurait, M., 2021, 454 pp.

[3] E.A. Dei, G.Yu. Tyumenkov, “O privedennoi forme termodinamicheskikh koeffitsientov realnykh gazov”, Problemy fiziki, matematiki i tekhniki, 2022, no. 4 (53), 25–29

[4] O. Redlich, J.N.S. Kwong, “On the thermodynamics of solutions V. Equation of state: fugacity of gaseous solutions”, Chemical Reviews, 44 (1949), 233–244 | DOI | MR

[5] G. Soave, “Equilibrium constants from a modified Redlich-Kwong equation of state”, Chem. Engng. Sci., 2 (1972), 1197–1203 | DOI

[6] D.Y. Peng, D.B. Robinson, “A new two-constant equation of state”, Ind. Eng. Chem. Fundam., 15:1 (1976), 59–64 | DOI | MR | Zbl

[7] J.S. Lopez-Echeverry, S. Reif-Acherman, E. Araujo-Lopez, “Peng - Robinson equation of state: 40 years through cubics”, Fluid Phase Equilibria, 447 (2017), 39–71 | DOI

[8] T. Ishikawa, W.K. Chung, B.C.Y. Lu, “Cubic Perturbed, Hard Sphere Equation of State for Thermodynamic Properties and Vapor-Liquid Equilibrium Calculations”, AIChE Journal, 26 (1980), 372–378 | DOI

[9] T. Ishikawa, W.K. Chung, B.C.Y. Lu, “Simple and generalized Equation of State for Vapor-Liquid Equilibrium Calculations”, Advances in Cryogenic Engineering, 25 (1980), 671–681 | DOI

[10] R.L. Fogelson, E.R. Likhachev, “Uravnenie sostoyaniya realnogo gaza”, ZhTF, 74:7 (2004), 129–130

[11] X. Sun, Y. Fang, W. Zhao, S. Xiang, “New Alpha Functions for the Peng-Robinson Cubic Equation of State”, ACS Omega, 7:6 (2022), 5332–5339 | DOI | MR

[12] Zhao Wenying, Xia LI, Sun Xiaoyan, Xiang Shuguang, “A Review of the Alpha Functions of Cubic Equations of State for Diferent Research Systems”, International Journal of Thermophysics, 40 (2019), 105–118 | DOI

[13] O.V. Novikova, G.Yu. Tyumenkov, “Analiz privedennykh modifikatsii uravneniya sostoyaniya Penga-Robinsona v ramkakh protsessa Dzhoulya-Tomsona”, Problemy fiziki, matematiki i tekhniki, 2013, no. 3 (16), 30–33

[14] E.A. Dei, G.Yu. Tyumenkov, “Svoistva neidealnogo gaza v modeli Isikavy-Changa-Lu”, Problemy fiziki, matematiki i tekhniki, 2017, no. 4 (33), 11–16

[15] E.A. Dei, G.Yu. Tyumenkov, “Krivye inversii effekta Dzhoulya-Tomsona dlya obobschennogo uravneniya Van-der-Vaalsa”, Izvestiya Gomelskogo gosudarstvennogo universiteta imeni F. Skoriny, 2015, no. 6 (93), 117–120