Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2023_4_a15, author = {E. V. Timoschenko and A. F. Razhkov}, title = {Research of the performance of machine learning algorithms in data classification problems}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {94--102}, publisher = {mathdoc}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2023_4_a15/} }
TY - JOUR AU - E. V. Timoschenko AU - A. F. Razhkov TI - Research of the performance of machine learning algorithms in data classification problems JO - Problemy fiziki, matematiki i tehniki PY - 2023 SP - 94 EP - 102 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2023_4_a15/ LA - ru ID - PFMT_2023_4_a15 ER -
%0 Journal Article %A E. V. Timoschenko %A A. F. Razhkov %T Research of the performance of machine learning algorithms in data classification problems %J Problemy fiziki, matematiki i tehniki %D 2023 %P 94-102 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2023_4_a15/ %G ru %F PFMT_2023_4_a15
E. V. Timoschenko; A. F. Razhkov. Research of the performance of machine learning algorithms in data classification problems. Problemy fiziki, matematiki i tehniki, no. 4 (2023), pp. 94-102. http://geodesic.mathdoc.fr/item/PFMT_2023_4_a15/
[1] A. Rajkomar, J. Dean, I. Kohane, “Machine Learning in Medicine”, The New Englang journal of medicine, 380:14, Apr 4. (2019), 1347–1358 | DOI
[2] H. Almarabeh, E. Amer, “A study of data mining techniques accuracy for healthcare”, International Journal of Computer Applications, 168:3, Jun (2017), 12–17 | DOI
[3] E.V. Timoschenko, A.F. Razhkov, “Metody intellektualnogo analiza dannykh v virtualnom praktikume dlya tselei tsifrovizatsii obrazovaniya”, Tsifrovaya transformatsiya, 2021, no. 4, 52–62
[4] E.V. Timoschenko, A.F. Razhkov, Intellektualnyi analiz dannykh: laboratornyi praktikum, MGU imeni A.A. Kuleshova, Mogilev, 2022, 72 pp.
[5] A.F. Razhkov, E.V. Timoschenko, “Optimizatsiya giperparametrov algoritmov mashinnogo obucheniya dlya resheniya zadach klassifikatsii dannykh”, Sovremennoe programmirovanie, materialy IV Mezhdunarodnoi nauchno-prakticheskoi konferentsii (g. Nizhnevartovsk, 8 dekabrya 2021 goda), ed. T.B. Kaziakhmedov, Nizhnevartovskii gosudarstvennyi universitet, Nizhnevartovsk, 2022, 267–274
[6] Skobtsov V. Yu., “Neirosetevye modeli dlya binarnoi klassifikatsii dannykh telemetricheskoi informatsii malykh kosmicheskikh apparatov”, Informatsionnye tekhnologii i sistemy 2021 (ITS 2021):, materialy mezhdunarodnoi nauchnoi konferentsii (Minsk, 24 noyabrya 2021 g.), eds. L.Yu. Shilin i dr., Belorusskii gosudarstvennyi universitet informatiki i radioelektroniki, Minsk, 2021, 98–100
[7] Ali Usman, Shamsi Mohammad Haris, Bohacek Mark, Purcell Karl, Hoare Cathal, Mangina Eleni, O Donnell James, “A data-driven approach for multi-scale GIS-based building energy modeling for analysis, planning and support decision making”, Applied Energy, 2020 | DOI
[8] P.C. Sen, M. Hajra, M. Ghosh, “Supervised Classification Algorithms in Machine Learning: A Survey and Review”, Emerging Technology in Modelling and Graphics, Advances in Intelligent Systems and Computing, 937, Springer Nature, Singapore, 2020, 99–111 | DOI
[9] UCI Machine Learning Repository, (Date of access: 20.09.2023) https://archive.ics.uci.edu/
[10] E.V. Timoschenko, A.F. Razhkov, “Metody intellektualnogo analiza biomeditsinskikh dannykh”, Itogi nauchnykh issledovanii uchenykh MGU im. A.A. Kuleshova 2019 g., materialy nauchno-metodicheskoi konferentsii (g. Mogilev, 29 yanvarya–10 fevralya 2020 goda), Mogilev, 2020, 106–107
[11] K. Balasree, K. Dharmarajan, “Big Data on Machine Learning - A Review”, Engineering and Scientific International Journal, 8:3 (2021), 86–91
[12] S.N. Bardab, T.M. Ahmed, T.A.A. Mohammed, “Data mining classification algorithms: An overview”, International Journal of Advanced and Applied Sciences, 8:2 (2021), 1–5
[13] M. Fatima, M. Pasha, “Survey of machine learning algorithms for disease diagnostic”, Journal of Intelligent Learning Systems and Applications, 9:1 (2017), 1–16 | DOI | MR
[14] Johann Faouzi, Olivier Colliot, “Classic machine learning algorithms”, Machine Learning for Brain Disorders. Neuromethods, 197 (2023) | DOI | Zbl
[15] S. Raschka, J. Patterson, C. Nolet, “Machine Learning in Python: Main Developments and Technology Trends in Data Science, Machine Learning, and Artificial Intelligence”, Information, 11:4 (2020), 193 | DOI
[16] B.J. Erickson, F. Kitamura, “Magician's Corner: 9”, Performance Metrics for Machine Learning Models. Radiology. Artificial Intelligence, 3:3 (2021) | DOI | Zbl