Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2023_4_a13, author = {A. O. Shimanovsky and D. A. Kupreyeva}, title = {Modeling of the layered pavement deformation considering the temperature change}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {81--86}, publisher = {mathdoc}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2023_4_a13/} }
TY - JOUR AU - A. O. Shimanovsky AU - D. A. Kupreyeva TI - Modeling of the layered pavement deformation considering the temperature change JO - Problemy fiziki, matematiki i tehniki PY - 2023 SP - 81 EP - 86 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2023_4_a13/ LA - ru ID - PFMT_2023_4_a13 ER -
A. O. Shimanovsky; D. A. Kupreyeva. Modeling of the layered pavement deformation considering the temperature change. Problemy fiziki, matematiki i tehniki, no. 4 (2023), pp. 81-86. http://geodesic.mathdoc.fr/item/PFMT_2023_4_a13/
[1] K. Kontson, K. Lill, A. Aavik, “Superpave Pavement Design Temperatures in Estonia”, The Baltic Journal of Road and Bridge Engineering, 18:2 (2023), 190–204 | DOI
[2] J. Fu et al., “Influence of regional climate change on summer temperature effect of asphalt pavement”, Journal of Chongqing Jiaotong University (Natural Science), 39:2 (2020), 87–94
[3] B.B. Teltaev, “Analiz raschetnykh znachenii modulya uprugosti asfaltobetonov”, Dorozhnaya tekhnika 2010, Slavutich, SPb., 2010, 130–137
[4] N.V. Kosenko i dr., “Obosnovanie raschetnykh kharakteristik asfaltobetonov po GOST R 58406.2–2020 pri proektirovanii dorozhnykh odezhd na rastyazhenie pri izgibe”, Avtomobil. Doroga. Infrastruktura, 2022, no. 2 (32), 15
[5] A.M. Kirillov, M.A. Zavyalov, “Modelirovanie izmeneniya modulya uprugosti asfaltobetona pri nagruzhenii”, Inzhenerno-stroitelnyi zhurnal, 2015, no. 2, 70–76
[6] G.N. Kiryukhin, “Effektivnaya model modulya uprugosti asfaltobetona”, Vestnik Kyrgyzskogo gosudarstvennogo universiteta stroitelstva, transporta i arkhitektury im. N. Isanova, 2016, no. 1, 78–84
[7] M. Jaczewski, J. Judycki, P. Jaskula, “Asphalt concrete subjected to long-time loading at low temperatures — Deviations from the time-temperature superposition principle”, Construction and Building Materials, 202 (2019), 426–439 | DOI
[8] A. Arabzadeh, M. Guler, “Thermal fatigue behavior of asphalt concrete: A laboratory-based investigation approach”, International Journal of Fatigue, 121 (2019), 229–236 | DOI
[9] C. Racanel, A. Burlacu, “Considerations regarding the influence of climatic conditions on pavement with asphalt layers”, Recent Advances in Civil and Mining Engineering, ECCIE'13, Proceedings of the 4th European Conference of Civil Engineering (Antalya, 2013), 141–147
[10] X. Kong et al., “Influences of temperature on mechanical properties of cement asphalt mortars”, Materials and Structures, 47 (2014), 285–292 | DOI
[11] J. Ouyang, J. Zhao, Y. Tan, “Modeling Mechanical Properties of Cement Asphalt Emulsion Mortar with Different Asphalt to Cement Ratios and Temperatures”, Journal of Materials in Civil Engineering, 30:10 (2018), 04018263, 10 pp. | DOI
[12] E.A. Teshaev, M.M. Zhalaldinov, G.B. Ergeshova, “Issledovanie vliyaniya godovykh kolebanii temperatury na deformatsionnye kharakteristiki asfaltobetonnykh pokrytii”, Nauka. Obrazovanie. Tekhnika, 2015, no. 1, 44–51
[13] R.K. Wolfe, B.W. Randolph, D.C. Colony, “Standardized Elastic Moduli of Pavement Layers for Overlay Design”, Journal of Transportation Engineering, 121:2 (1995), 221–232 | DOI | MR
[14] G. Vassoler, W. Chong, L.P. Specht, “Comportamento mecanico de pavimentos flexiveis submetidos a gradientes termicos”, Acta Scientiarum. Technology, 33:3 (2011), 265–271
[15] J.A. Ramos Garcia, M. Castro, “Analysis of the temperature influence on flexible pavement deflection”, Construction and Building Materials, 25:8 (2011), 3530–3539 | DOI
[16] O.C. Assogba et al., “Numerical investigation of the mechanical response of semi-rigid base asphalt pavement under traffic load and nonlinear temperature gradient effect”, Construction and Building Materials, 235 (2020), 117406, 25 | DOI
[17] Q. Xue et al., “Dynamic behavior of asphalt pavement structure under temperature-stress coupled loading”, Applied thermal engineering, 53:1 (2013), 1–7 | DOI
[18] L. Mejlun, J. Judycki, B. Dolzycki, “Comparison of elastic and viscoelastic analysis of asphalt pavement at high temperature”, Procedia Engineering, 172 (2017), 746–753 | DOI
[19] N. Li et al., “Research on the high temperature performance of asphalt pavement based on field cores with different rutting development levels”, Materials and Structures, 54 (2021), 1–12 | DOI
[20] M.A. Gajewski, P. Langlois, “Prediction of asphalt concrete low-temperature cracking resistance on the basis of different constitutive models”, Procedia Engineering, 91 (2014), 81–86 | DOI
[21] E.V. Dave, W.G. Buttlar, “Thermal reflective cracking of asphalt concrete overlays”, International Journal of Pavement Engineering, 11:6 (2010), 477–488 | DOI
[22] Y. Luo et al., “Thermal fatigue and cracking behaviors of asphalt mixtures under different temperature variations”, Construction and Building Materials, 369 (2023), 130623, 16 pp. | DOI
[23] A. Shimanovsky et al., “FEM Modelling of the Temperature Influence on the Stress-Strain State of the Pavement”, Komunikacie, 25:1 (2023), D1–D9
[24] O.I. Tsyganok, I.E. Krakova, A.O. Shimanovskii, “Deformirovanie dorozhnoi odezhdy pri raznykh temperaturakh ee poverkhnosti”, Mekhanika. Issledovaniya i innovatsii, 2022, no. 15, 227–234 | Zbl
[25] J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices, Clarendon Press, Oxford, 1957, 322 pp. | Zbl