Asymptotic analysis of G-network with many-lines systems with control and quarantine queues
Problemy fiziki, matematiki i tehniki, no. 3 (2023), pp. 48-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for finding average characteristics and their variances for a G-network in systems with control and quarantine queues in case of a big but limited number of customers in network is proposed. This network is a mathematical model of informational systems and networks, which consists of multiprocessor devices with antivirus software installed on each of them in case of heavy load in the network.
Keywords: G-network, control and quarantine queues, asymptotic analysis, antivirus software.
@article{PFMT_2023_3_a8,
     author = {D. Y. Kopats},
     title = {Asymptotic analysis of {G-network} with many-lines systems with control and quarantine queues},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {48--55},
     publisher = {mathdoc},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2023_3_a8/}
}
TY  - JOUR
AU  - D. Y. Kopats
TI  - Asymptotic analysis of G-network with many-lines systems with control and quarantine queues
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2023
SP  - 48
EP  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2023_3_a8/
LA  - ru
ID  - PFMT_2023_3_a8
ER  - 
%0 Journal Article
%A D. Y. Kopats
%T Asymptotic analysis of G-network with many-lines systems with control and quarantine queues
%J Problemy fiziki, matematiki i tehniki
%D 2023
%P 48-55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2023_3_a8/
%G ru
%F PFMT_2023_3_a8
D. Y. Kopats. Asymptotic analysis of G-network with many-lines systems with control and quarantine queues. Problemy fiziki, matematiki i tehniki, no. 3 (2023), pp. 48-55. http://geodesic.mathdoc.fr/item/PFMT_2023_3_a8/

[1] E. Gelenbe, “Product form queueing networks with negative and positive customers”, Journal of Applied Probability, 28 (1991), 656–663 | DOI | MR | Zbl

[2] Yu.E. Letunovich, O.V. Yakubovich, “Otkrytye markovskie seti massovogo obsluzhivaniya s kontrolnymi ocheredyami i karantinnym uzlom”, Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaya tekhnika i informatika, 2017, no. 41, 32–38

[3] K.U. Kosarava, D. Y. Kopats, “Application of a queuing network with positive and negative arrivals for modeling a computer network with antivirus software”, Raspredelennye kompyuternye i telekommunikatsionnye seti: upravlenie vychislenie, svyaz (DCCN-2021), materialy XXIV Mezhdunar. nauch. konf. (Moskva, 20–24 sent. 2021 g.), IPU RAN, M., 2021, 108–113

[4] K.U. Kosarava, D.Y. Kopats, “Analysis of the Probabilistic and Cost Characteristics of the Queueing Network with a Control Queue and Quarantine in Systems and Negative Requests by Means of Successive Approximations”, Distributed Computer and Communication Networks (DCCN 2021): International Conference (Moscow, September 20–24, 2021), Communications in Computer and Information Science (CCIS), 1552, Springer Nature Switzerland AG, M., 2022, 259–271 | DOI

[5] D.Ya. Kopat, “Nakhozhdenie ozhidaemykh dokhodov sistem v G-seti s kontrolnoi i karantinnoi ocheredyami i peremescheniyami otritsatelnykh zayavok mezhdu sistemami seti”, Informatsionno-kommunikatsionnye tekhnologii: dostizheniya, problemy, innovatsii (IKT-2022), sb. materialov II Mezhdunar. nauch.-prakt. konf. (Polotsk, 30–31 marta 2022 g.), Polotskii gosudarstvennyi universitet im. Evfrosinii Polotskoi, Novopolotsk, 2022, 23–28

[6] A.A. Nazarov, A.F. Terpugov, Teoriya massovogo obsluzhivaniya, uchebnoe posobie, 2-e izd., ispr., Izd-vo HTL, Tomsk, 2010, 228 pp.

[7] T.V. Rusilko, D.Ya. Kopat, “Differentsialnye uravneniya dlya momentov vektora sostoyaniya zamknutoi po strukture seti massovogo obsluzhivaniya s neterpelivymi zayavkami”, Vestnik Dagestanskogo gosudarstvennogo universiteta. Seriya 1. Estestvennye nauki, 36:2 (2021), 20–30