@article{PFMT_2023_3_a8,
author = {D. Y. Kopats},
title = {Asymptotic analysis of {G-network} with many-lines systems with control and quarantine queues},
journal = {Problemy fiziki, matematiki i tehniki},
pages = {48--55},
year = {2023},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PFMT_2023_3_a8/}
}
D. Y. Kopats. Asymptotic analysis of G-network with many-lines systems with control and quarantine queues. Problemy fiziki, matematiki i tehniki, no. 3 (2023), pp. 48-55. http://geodesic.mathdoc.fr/item/PFMT_2023_3_a8/
[1] E. Gelenbe, “Product form queueing networks with negative and positive customers”, Journal of Applied Probability, 28 (1991), 656–663 | DOI | MR | Zbl
[2] Yu.E. Letunovich, O.V. Yakubovich, “Otkrytye markovskie seti massovogo obsluzhivaniya s kontrolnymi ocheredyami i karantinnym uzlom”, Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaya tekhnika i informatika, 2017, no. 41, 32–38
[3] K.U. Kosarava, D. Y. Kopats, “Application of a queuing network with positive and negative arrivals for modeling a computer network with antivirus software”, Raspredelennye kompyuternye i telekommunikatsionnye seti: upravlenie vychislenie, svyaz (DCCN-2021), materialy XXIV Mezhdunar. nauch. konf. (Moskva, 20–24 sent. 2021 g.), IPU RAN, M., 2021, 108–113
[4] K.U. Kosarava, D.Y. Kopats, “Analysis of the Probabilistic and Cost Characteristics of the Queueing Network with a Control Queue and Quarantine in Systems and Negative Requests by Means of Successive Approximations”, Distributed Computer and Communication Networks (DCCN 2021): International Conference (Moscow, September 20–24, 2021), Communications in Computer and Information Science (CCIS), 1552, Springer Nature Switzerland AG, M., 2022, 259–271 | DOI
[5] D.Ya. Kopat, “Nakhozhdenie ozhidaemykh dokhodov sistem v G-seti s kontrolnoi i karantinnoi ocheredyami i peremescheniyami otritsatelnykh zayavok mezhdu sistemami seti”, Informatsionno-kommunikatsionnye tekhnologii: dostizheniya, problemy, innovatsii (IKT-2022), sb. materialov II Mezhdunar. nauch.-prakt. konf. (Polotsk, 30–31 marta 2022 g.), Polotskii gosudarstvennyi universitet im. Evfrosinii Polotskoi, Novopolotsk, 2022, 23–28
[6] A.A. Nazarov, A.F. Terpugov, Teoriya massovogo obsluzhivaniya, uchebnoe posobie, 2-e izd., ispr., Izd-vo HTL, Tomsk, 2010, 228 pp.
[7] T.V. Rusilko, D.Ya. Kopat, “Differentsialnye uravneniya dlya momentov vektora sostoyaniya zamknutoi po strukture seti massovogo obsluzhivaniya s neterpelivymi zayavkami”, Vestnik Dagestanskogo gosudarstvennogo universiteta. Seriya 1. Estestvennye nauki, 36:2 (2021), 20–30