The thermally controlled terahertz hyperlens
Problemy fiziki, matematiki i tehniki, no. 3 (2023), pp. 32-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

The presented article proposes an improved design of a controllable cylindrical hyperlens based on alternating layers of indium antimonide and silicon. This design is intended for obtaining sub-wavelength resolution images in the terahertz range. Using numerical simulation, the ability of dynamic tuning of the hyperlens over a wide frequency range by varying the temperature is demonstrated. The key characteristics of this structure include small dimensions, low losses in the dielectric, and the ability to form images with super-high resolution. This research can contribute to enhancing the resolution of visualization systems in the terahertz range, as well as promoting the development of ultra-high resolution imaging and probing systems operating in this range.
Mots-clés : hyperlens, THz range.
Keywords: temperature, numerical simulation
@article{PFMT_2023_3_a5,
     author = {I. A. Fanyaev and D. V. Slepenkov and A. Yu. Kravchenko and I. V. Semchenko and J. Li and S. A. Khakhomov},
     title = {The thermally controlled terahertz hyperlens},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {32--37},
     publisher = {mathdoc},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2023_3_a5/}
}
TY  - JOUR
AU  - I. A. Fanyaev
AU  - D. V. Slepenkov
AU  - A. Yu. Kravchenko
AU  - I. V. Semchenko
AU  - J. Li
AU  - S. A. Khakhomov
TI  - The thermally controlled terahertz hyperlens
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2023
SP  - 32
EP  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2023_3_a5/
LA  - ru
ID  - PFMT_2023_3_a5
ER  - 
%0 Journal Article
%A I. A. Fanyaev
%A D. V. Slepenkov
%A A. Yu. Kravchenko
%A I. V. Semchenko
%A J. Li
%A S. A. Khakhomov
%T The thermally controlled terahertz hyperlens
%J Problemy fiziki, matematiki i tehniki
%D 2023
%P 32-37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2023_3_a5/
%G ru
%F PFMT_2023_3_a5
I. A. Fanyaev; D. V. Slepenkov; A. Yu. Kravchenko; I. V. Semchenko; J. Li; S. A. Khakhomov. The thermally controlled terahertz hyperlens. Problemy fiziki, matematiki i tehniki, no. 3 (2023), pp. 32-37. http://geodesic.mathdoc.fr/item/PFMT_2023_3_a5/

[1] I.B. Vendik i dr., “Elektromagnitnoe izluchenie teragertsovogo diapazona: sposoby upravleniya i vozmozhnye oblasti primeneniya”, Elektronika i mikroelektronika SVCh, 1 (2016), 101–105

[2] J.D. Buron et al., “Graphene conductance uniformity mapping”, Nano letters, 12:10 (2012), 5074–5081 | DOI

[3] J.A. Zeitler et al., “Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting-a review”, Journal of Pharmacy and Pharmacology, 59:2 (2007), 209–223 | DOI

[4] E.V. Yakovlev et al., “Non-destructive evaluation of polymer composite materials at the manufacturing stage using terahertz pulsed spectroscopy”, IEEE Transactions on Terahertz science and Technology, 5:5 (2015), 810–816 | DOI

[5] M. Yamashita et al., “Backside observation of large-scale integrated circuits with multilayered interconnections using laser terahertz emission microscope”, Applied Physics Letters, 94:19 (2009), 1–8 | DOI

[6] A.J. Huber et al., “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices”, Nano letters, 8:11 (2008), 3766–3770 | DOI

[7] O.A. Smolyanskaya et al., “Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids”, Progress in Quantum Electronics, 62 (2018), 1–77 | DOI

[8] W.L. Chan, J. Deibel, D.M. Mittleman, “Imaging with terahertz radiation”, Reports on progress in physics, 70:8 (2007), 1325 | DOI

[9] P. De Maagt, “Terahertz technology for space and earth applications”, 2007 International workshop on Antenna Technology: Small and Smart Antennas Metamaterials and Applications, IEEE, 2007, 111–115 | DOI

[10] B. Hecht et al., “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications”, The Journal of Chemical Physics, 112:18 (2000), 7761–7774 | DOI

[11] P. Huo et al., “Hyperbolic metamaterials and metasurfaces: fundamentals and applications”, Advanced Optical Materials, 7:14 (2019), 1801616 | DOI

[12] J. Rho et al., “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies”, Nature communications, 1:1 (2010), 143 | DOI

[13] H. Zhang, Z. Jiao, E. Mcleod, “Tunable terahertz hyperbolic metamaterial slabs and super-resolving hyperlenses”, Applied Optics, 59:22 (2020), G64–G70 | DOI

[14] J.A. Roberts et al., “Tunable hyperbolic metamaterials based on self-assembled carbon nanotubes”, Nano Letters, 19:5 (2019), 3131–3137 | DOI

[15] X. Wang et al., “Metal-free oxide-nitride heterostructure as a tunable hyperbolic metamaterial platform”, Nano Letters, 20:9 (2020), 6614–6622 | DOI

[16] S. Prayakarao et al., “Tunable VO$_2$/Au hyperbolic metamaterial”, Applied Physics Letters, 109:6 (2016), 061105 | DOI

[17] L. Liu et al., “Sub-diffraction demagnification imaging lithography by hyperlens with plasmonic reflector layer”, RSC advances, 6:98 (2016), 95973–95978 | DOI

[18] K.V. Baryshnikova i dr., “Metalinzy dlya polucheniya izobrazhenii s subvolnovym razresheniem”, Uspekhi fizicheskikh nauk, 192:4 (2022), 386–412 | DOI

[19] I.B. Semchenko, S.A. Khakhomov, Elektromagnitnye volny v metamaterialakh i spiralnykh strukturakh, Belaruskaya navuk, Minsk, 2019, 280 pp.

[20] I.V. Semchenko et al., “Investigation of electromagnetic properties of a high absorptive, weakly reflective metamaterial-substrate system with compensated chirality”, Journal of Applied Physics, 121:1 (2017), 015108 | DOI

[21] I.V. Semchenko et al., “Radiation of circularly polarized microwaves by a plane periodic structure of $\Omega$ elements”, J. Commun. Technol. Electron., 52 (2007), 1002–1005 | DOI

[22] I.V. Semchenko, S.A. Khakhomov, “Artificial Uniaxial Bianisotropic Media at Oblique Incidence of Electromagnetic Waves”, Electromagnetics, 22:1 (2002), 71–84 | DOI

[23] I.V. Semchenko, S.A. Khakhomov, S.A. Tretyakov, A.H. Sihvola, “Electromagnetic Waves in Artificial Chiral Structures with Dielectric and Magnetic Properties”, Electromagnetics, 21:5 (2001), 401–414 | DOI

[24] A. Serdyukov et al., Electromagnetics of bi-anisotropic materials: Theory and applications, Gordon and Breach Science Publishers, Amsterdam, 2001, 337 pp.

[25] M. Naftaly, R.E. Miles, P.J. Greenslade, “THz transmission in polymer materials - a data library”, 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics, IEEE, 2007, 819–820

[26] Iv.A. Fanyaev, Ig.A. Fanyaev, S.A. Khakhomov, “Parametricheskii analiz tsilindricheskoi giperlinzy s subvolnovym razresheniem dlya TGts voln”, Problemy fiziki, matematiki i tekhniki, 2022, no. 3(52), 48–55

[27] V.M. Agranovich, V.E. Kravtsov, “Notes on crystal optics of superlattices”, Solid State Communications, 55 (1985), 85–90 | DOI

[28] L.Yu. Prokopeva, “Modelirovanie anizotropnykh metamaterialov s pomoschyu parallelnoi realizatsii metoda konechnykh ob'emov dlya resheniya nestatsionarnykh uravnenii Maksvella”, Vychislitelnye tekhnologii, 14:3 (2009), 58–68

[29] S. Hao et al., “Hyperbolic metamaterial structures based on graphene for THz super-resolution imaging applications”, Optical Materials Express, 13:1 (2023), 247–262 | DOI

[30] I.A. Fanyaev, I.A. Faniayeu, S.A. Khakhomov, “Switchable Cylindrical Hyperlens for THz Band”, IEEE Conference Proceedings, 2022, 1–3

[31] I. Fanyaev, I. Faniayeu, J. Li, S. Khakhomov, “Subwavelength imaging amplification via electro-thermally tunable InSb-graphene-based hyperlens in terahertz frequency”, Results in Physics, 52 (2023), 106917 | DOI