Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2023_3_a5, author = {I. A. Fanyaev and D. V. Slepenkov and A. Yu. Kravchenko and I. V. Semchenko and J. Li and S. A. Khakhomov}, title = {The thermally controlled terahertz hyperlens}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {32--37}, publisher = {mathdoc}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2023_3_a5/} }
TY - JOUR AU - I. A. Fanyaev AU - D. V. Slepenkov AU - A. Yu. Kravchenko AU - I. V. Semchenko AU - J. Li AU - S. A. Khakhomov TI - The thermally controlled terahertz hyperlens JO - Problemy fiziki, matematiki i tehniki PY - 2023 SP - 32 EP - 37 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2023_3_a5/ LA - ru ID - PFMT_2023_3_a5 ER -
%0 Journal Article %A I. A. Fanyaev %A D. V. Slepenkov %A A. Yu. Kravchenko %A I. V. Semchenko %A J. Li %A S. A. Khakhomov %T The thermally controlled terahertz hyperlens %J Problemy fiziki, matematiki i tehniki %D 2023 %P 32-37 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2023_3_a5/ %G ru %F PFMT_2023_3_a5
I. A. Fanyaev; D. V. Slepenkov; A. Yu. Kravchenko; I. V. Semchenko; J. Li; S. A. Khakhomov. The thermally controlled terahertz hyperlens. Problemy fiziki, matematiki i tehniki, no. 3 (2023), pp. 32-37. http://geodesic.mathdoc.fr/item/PFMT_2023_3_a5/
[1] I.B. Vendik i dr., “Elektromagnitnoe izluchenie teragertsovogo diapazona: sposoby upravleniya i vozmozhnye oblasti primeneniya”, Elektronika i mikroelektronika SVCh, 1 (2016), 101–105
[2] J.D. Buron et al., “Graphene conductance uniformity mapping”, Nano letters, 12:10 (2012), 5074–5081 | DOI
[3] J.A. Zeitler et al., “Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting-a review”, Journal of Pharmacy and Pharmacology, 59:2 (2007), 209–223 | DOI
[4] E.V. Yakovlev et al., “Non-destructive evaluation of polymer composite materials at the manufacturing stage using terahertz pulsed spectroscopy”, IEEE Transactions on Terahertz science and Technology, 5:5 (2015), 810–816 | DOI
[5] M. Yamashita et al., “Backside observation of large-scale integrated circuits with multilayered interconnections using laser terahertz emission microscope”, Applied Physics Letters, 94:19 (2009), 1–8 | DOI
[6] A.J. Huber et al., “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices”, Nano letters, 8:11 (2008), 3766–3770 | DOI
[7] O.A. Smolyanskaya et al., “Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids”, Progress in Quantum Electronics, 62 (2018), 1–77 | DOI
[8] W.L. Chan, J. Deibel, D.M. Mittleman, “Imaging with terahertz radiation”, Reports on progress in physics, 70:8 (2007), 1325 | DOI
[9] P. De Maagt, “Terahertz technology for space and earth applications”, 2007 International workshop on Antenna Technology: Small and Smart Antennas Metamaterials and Applications, IEEE, 2007, 111–115 | DOI
[10] B. Hecht et al., “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications”, The Journal of Chemical Physics, 112:18 (2000), 7761–7774 | DOI
[11] P. Huo et al., “Hyperbolic metamaterials and metasurfaces: fundamentals and applications”, Advanced Optical Materials, 7:14 (2019), 1801616 | DOI
[12] J. Rho et al., “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies”, Nature communications, 1:1 (2010), 143 | DOI
[13] H. Zhang, Z. Jiao, E. Mcleod, “Tunable terahertz hyperbolic metamaterial slabs and super-resolving hyperlenses”, Applied Optics, 59:22 (2020), G64–G70 | DOI
[14] J.A. Roberts et al., “Tunable hyperbolic metamaterials based on self-assembled carbon nanotubes”, Nano Letters, 19:5 (2019), 3131–3137 | DOI
[15] X. Wang et al., “Metal-free oxide-nitride heterostructure as a tunable hyperbolic metamaterial platform”, Nano Letters, 20:9 (2020), 6614–6622 | DOI
[16] S. Prayakarao et al., “Tunable VO$_2$/Au hyperbolic metamaterial”, Applied Physics Letters, 109:6 (2016), 061105 | DOI
[17] L. Liu et al., “Sub-diffraction demagnification imaging lithography by hyperlens with plasmonic reflector layer”, RSC advances, 6:98 (2016), 95973–95978 | DOI
[18] K.V. Baryshnikova i dr., “Metalinzy dlya polucheniya izobrazhenii s subvolnovym razresheniem”, Uspekhi fizicheskikh nauk, 192:4 (2022), 386–412 | DOI
[19] I.B. Semchenko, S.A. Khakhomov, Elektromagnitnye volny v metamaterialakh i spiralnykh strukturakh, Belaruskaya navuk, Minsk, 2019, 280 pp.
[20] I.V. Semchenko et al., “Investigation of electromagnetic properties of a high absorptive, weakly reflective metamaterial-substrate system with compensated chirality”, Journal of Applied Physics, 121:1 (2017), 015108 | DOI
[21] I.V. Semchenko et al., “Radiation of circularly polarized microwaves by a plane periodic structure of $\Omega$ elements”, J. Commun. Technol. Electron., 52 (2007), 1002–1005 | DOI
[22] I.V. Semchenko, S.A. Khakhomov, “Artificial Uniaxial Bianisotropic Media at Oblique Incidence of Electromagnetic Waves”, Electromagnetics, 22:1 (2002), 71–84 | DOI
[23] I.V. Semchenko, S.A. Khakhomov, S.A. Tretyakov, A.H. Sihvola, “Electromagnetic Waves in Artificial Chiral Structures with Dielectric and Magnetic Properties”, Electromagnetics, 21:5 (2001), 401–414 | DOI
[24] A. Serdyukov et al., Electromagnetics of bi-anisotropic materials: Theory and applications, Gordon and Breach Science Publishers, Amsterdam, 2001, 337 pp.
[25] M. Naftaly, R.E. Miles, P.J. Greenslade, “THz transmission in polymer materials - a data library”, 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics, IEEE, 2007, 819–820
[26] Iv.A. Fanyaev, Ig.A. Fanyaev, S.A. Khakhomov, “Parametricheskii analiz tsilindricheskoi giperlinzy s subvolnovym razresheniem dlya TGts voln”, Problemy fiziki, matematiki i tekhniki, 2022, no. 3(52), 48–55
[27] V.M. Agranovich, V.E. Kravtsov, “Notes on crystal optics of superlattices”, Solid State Communications, 55 (1985), 85–90 | DOI
[28] L.Yu. Prokopeva, “Modelirovanie anizotropnykh metamaterialov s pomoschyu parallelnoi realizatsii metoda konechnykh ob'emov dlya resheniya nestatsionarnykh uravnenii Maksvella”, Vychislitelnye tekhnologii, 14:3 (2009), 58–68
[29] S. Hao et al., “Hyperbolic metamaterial structures based on graphene for THz super-resolution imaging applications”, Optical Materials Express, 13:1 (2023), 247–262 | DOI
[30] I.A. Fanyaev, I.A. Faniayeu, S.A. Khakhomov, “Switchable Cylindrical Hyperlens for THz Band”, IEEE Conference Proceedings, 2022, 1–3
[31] I. Fanyaev, I. Faniayeu, J. Li, S. Khakhomov, “Subwavelength imaging amplification via electro-thermally tunable InSb-graphene-based hyperlens in terahertz frequency”, Results in Physics, 52 (2023), 106917 | DOI