Multi-criteria optimization of quartz glass laser cutting parameters using neural network simulation and genetic algorithm
Problemy fiziki, matematiki i tehniki, no. 3 (2023), pp. 26-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using neural network modeling and a genetic algorithm, the values of technological parameters were determined that ensure efficient laser cutting of quartz glass when the workpiece is exposed to a laser beam with a wavelength of 10,6 $\mu$m and a coolant. The multi-criteria optimization of laser cutting of quartz plates was performed according to the criteria of maximum tensile stresses and maximum processing speed. The algorithms for choosing the optimal architecture of neural networks are described.
Keywords: neural network modeling, laser cutting, genetic algorithm, parameter optimization.
@article{PFMT_2023_3_a4,
     author = {Yu. V. Nikitjuk and V. A. Prokhorenko and A. I. Kulyba},
     title = {Multi-criteria optimization of quartz glass laser cutting parameters using neural network simulation and genetic algorithm},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {26--31},
     publisher = {mathdoc},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2023_3_a4/}
}
TY  - JOUR
AU  - Yu. V. Nikitjuk
AU  - V. A. Prokhorenko
AU  - A. I. Kulyba
TI  - Multi-criteria optimization of quartz glass laser cutting parameters using neural network simulation and genetic algorithm
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2023
SP  - 26
EP  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2023_3_a4/
LA  - ru
ID  - PFMT_2023_3_a4
ER  - 
%0 Journal Article
%A Yu. V. Nikitjuk
%A V. A. Prokhorenko
%A A. I. Kulyba
%T Multi-criteria optimization of quartz glass laser cutting parameters using neural network simulation and genetic algorithm
%J Problemy fiziki, matematiki i tehniki
%D 2023
%P 26-31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2023_3_a4/
%G ru
%F PFMT_2023_3_a4
Yu. V. Nikitjuk; V. A. Prokhorenko; A. I. Kulyba. Multi-criteria optimization of quartz glass laser cutting parameters using neural network simulation and genetic algorithm. Problemy fiziki, matematiki i tehniki, no. 3 (2023), pp. 26-31. http://geodesic.mathdoc.fr/item/PFMT_2023_3_a4/

[1] S.V. Shalupaev, E.B. Shershnev, Y.V. Nikityuk, A.A. Sereda, “Two-beam laser thermal cleavage of brittle nonmetallic materials”, Journal of Optical Technology, 73:5 (2006), 356–359 | DOI

[2] A.N. Serdyukov, S.V. Shalupaev, Y.V. Nikityuk, “Features of controlled laser thermal cleavage of crystalline silicon”, Crystallography Reports, 55:6 (2010), 933–937 | DOI

[3] A.N. Serdyukov, E.B. Shershnev, Y.V. Nikityuk et al., “Features of controlled laser thermal cleavage of crystal quartz”, Crystallography Reports, 57:6 (2012), 792–797 | DOI

[4] Y.V. Nikitjuk, A.N. Serdyukov, I.Y. Aushev, “Determination of the parameters of twobeam laser splitting of silicate glasses using regression and neural network models”, Journal of the Belarusian State University. Physics, 2022, no. 1, 35–43 | DOI

[5] Y. Nikitjuk, G. Bayevich, V. Myshkovets et al., “Characterization of Laser Welding of Steel 30XGCH2A by Combining Artificial Neural Networks and Finite Element Method”, Lecture Notes in Networks and Systems, 422, 2022, 273–279 | DOI

[6] Yu.V. Nikityuk, A.N. Serdyukov, V.A. Prokhorenko, I.Yu. Aushev, “Primenenie iskusstvennykh neironnykh setei i metoda konechnykh elementov dlya opredeleniya parametrov obrabotki kvartsevykh zolgel stekol ellipticheskimi lazernymi puchkami”, Problemy fiziki, matematiki i tekhniki, 2021, no. 3 (48), 30–36

[7] Y.V. Nikityuk, A.N. Serdyukov, I.Y. Aushev, “Optimization of two-beam laser cleavage of silicate glass”, Journal of Optical Technology, 89:2 (2022), 121–125 | DOI

[8] Yu.V. Nikityuk, A.A. Sereda, A.N. Serdyukov i dr., “Optimizatsiya parametrov dvukhluchevogo assimetrichnogo lazernogo raskalyvaniya silikatnogo stekla”, Opticheskii zhurnal, 90:6 (2023), 15–24 | DOI

[9] S.V. Krasnovskaya, V.V. Naprasnikov, “Obzor vozmozhnostei optimizatsionnykh algoritmov pri modelirovanii konstruktsii kompressorno-kondensatornykh agregatov metodom konechnykh elementov”, Vestsi Natsyyanalnai akademii navuk Belarusi. Seryya fizika-tekhnichnykh navuk, 2016, no. 2, 92–98

[10] V.F. Ochkov, Mathcad 14 dlya studentov i inzhenerov: russkaya versiya, BKhV-Peterburg, 2009, 512 pp.

[11] K.O. Stanley, R. Miikkulainen, “Evolving Neural Networks Through Augmenting Topologies”, Evolutionary Computation, 10:2 (2002), 99–127 | DOI