Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2023_3_a16, author = {A. V. Sergeyenko and A. Y. Liplyanin and A. V. Khijnyak}, title = {Method for calculating the adequacy parameters of image mathematical model}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {95--99}, publisher = {mathdoc}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2023_3_a16/} }
TY - JOUR AU - A. V. Sergeyenko AU - A. Y. Liplyanin AU - A. V. Khijnyak TI - Method for calculating the adequacy parameters of image mathematical model JO - Problemy fiziki, matematiki i tehniki PY - 2023 SP - 95 EP - 99 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2023_3_a16/ LA - ru ID - PFMT_2023_3_a16 ER -
%0 Journal Article %A A. V. Sergeyenko %A A. Y. Liplyanin %A A. V. Khijnyak %T Method for calculating the adequacy parameters of image mathematical model %J Problemy fiziki, matematiki i tehniki %D 2023 %P 95-99 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2023_3_a16/ %G ru %F PFMT_2023_3_a16
A. V. Sergeyenko; A. Y. Liplyanin; A. V. Khijnyak. Method for calculating the adequacy parameters of image mathematical model. Problemy fiziki, matematiki i tehniki, no. 3 (2023), pp. 95-99. http://geodesic.mathdoc.fr/item/PFMT_2023_3_a16/
[1] A.V. Sergeenko, A.Yu. Liplyanin, A.V. Khizhnyak, “Universalnyi instrumentarii dlya issledovaniya raboty algoritmov obnaruzheniya v opticheskom diapazone”, Vestnik PGU, 2020, no. 12, 36–43
[2] N.N. Maksimova, Matematicheskoe modelirovanie, ucheb.-metod. posobie, Izd-vo AmGU, Blagoveschensk, 2019, 88 pp.
[3] A.Yu. Liplyanin i dr., “Obosnovanie kriteriya otsenki kachestva vosstanovleniya iskazhennykh izobrazhenii dlya iteratsionnogo algoritma v sistemakh korrelyatsionnogo obnaruzheniya”, Doklady BGUIR, 2019, no. 4, 64–72
[4] A.V. Kokoshkin i dr., “Sravnenie ob'ektivnykh metodov otsenki kachestva tsifrovykh izobrazhenii”, Zhurnal radioelektroniki, 2015, no. 6 (Data dostupa: 20.01.2023) http://jre.cplire.ru/jre/jun15/15/text.pdf
[5] Wang et al., “Image Quality Assessment: From Error Visibility to Structural Similarity”, IEEE Transactions on Image Processing, 13:4 (2004) (Date of access: 25.01.2023) https://www.researchgate.net/publication/3327793_Image_Quaity_Assessment_From_Error_Visibility_to_Structural_Similarity | DOI
[6] A. Alizar, «Vyglyadit pokhozhe». Kak rabotaet pertseptivnyi khesh, Khabr, (Data dostupa: 21.01.2023) https://habr.com/ru/articles/120562/
[7] J. Wang et al., “Learning Fine-Grained Image Similarity with Deep Ranking”, 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014, arXiv: (Date of access: 22.01.2023) 1404.4661
[8] TORCH.NN, PyTorch, (Date of access: 23.02.2023) https://pytorch.org/docs/stable/nn.html
[9] G.M. Krekov i dr., Imitatsionnoe modelirovanie v zadachakh opticheskogo distantsionnogo zondirovaniya, Nauka, Novosibirsk, 1988, 165 pp.
[10] N.A. Andriyanov, Dvazhdy stokhasticheskie avtoregressionnye modeli izobrazhenii, dis. ... kand. tekhn. nauk: 05.13.18, Ulyanovsk, 2017, 186 pp.
[11] Perekrestnaya proverka: otsenka proizvoditelnosti, Scikitlearn, (Data dostupa: 24.02.2023) https://scikit-learn.ru/3-1-cross-validation-evaluating-estimator-performance/