Method for calculating the adequacy parameters of image mathematical model
Problemy fiziki, matematiki i tehniki, no. 3 (2023), pp. 95-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

A structure of an artificial neural network for assessing the similarity of a pair of images, comparing the quality of its work with other criteria for image similarity are presented. Based on the proposed artificial neural network, a methodology for estimating the adequacy of mathematical image model by the estimation of its similarity to real images has been developed. A comparison of the estimation of the adequacy of the mathematical image model by the classical method and using the proposed methodology on the example of a Gaussian mathematical image model has ben conducted.
Keywords: image modeling, model adequacy estimate, artificial neural networks, similarity estimate.
@article{PFMT_2023_3_a16,
     author = {A. V. Sergeyenko and A. Y. Liplyanin and A. V. Khijnyak},
     title = {Method for calculating the adequacy parameters of image mathematical model},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {95--99},
     publisher = {mathdoc},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2023_3_a16/}
}
TY  - JOUR
AU  - A. V. Sergeyenko
AU  - A. Y. Liplyanin
AU  - A. V. Khijnyak
TI  - Method for calculating the adequacy parameters of image mathematical model
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2023
SP  - 95
EP  - 99
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2023_3_a16/
LA  - ru
ID  - PFMT_2023_3_a16
ER  - 
%0 Journal Article
%A A. V. Sergeyenko
%A A. Y. Liplyanin
%A A. V. Khijnyak
%T Method for calculating the adequacy parameters of image mathematical model
%J Problemy fiziki, matematiki i tehniki
%D 2023
%P 95-99
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2023_3_a16/
%G ru
%F PFMT_2023_3_a16
A. V. Sergeyenko; A. Y. Liplyanin; A. V. Khijnyak. Method for calculating the adequacy parameters of image mathematical model. Problemy fiziki, matematiki i tehniki, no. 3 (2023), pp. 95-99. http://geodesic.mathdoc.fr/item/PFMT_2023_3_a16/

[1] A.V. Sergeenko, A.Yu. Liplyanin, A.V. Khizhnyak, “Universalnyi instrumentarii dlya issledovaniya raboty algoritmov obnaruzheniya v opticheskom diapazone”, Vestnik PGU, 2020, no. 12, 36–43

[2] N.N. Maksimova, Matematicheskoe modelirovanie, ucheb.-metod. posobie, Izd-vo AmGU, Blagoveschensk, 2019, 88 pp.

[3] A.Yu. Liplyanin i dr., “Obosnovanie kriteriya otsenki kachestva vosstanovleniya iskazhennykh izobrazhenii dlya iteratsionnogo algoritma v sistemakh korrelyatsionnogo obnaruzheniya”, Doklady BGUIR, 2019, no. 4, 64–72

[4] A.V. Kokoshkin i dr., “Sravnenie ob'ektivnykh metodov otsenki kachestva tsifrovykh izobrazhenii”, Zhurnal radioelektroniki, 2015, no. 6 (Data dostupa: 20.01.2023) http://jre.cplire.ru/jre/jun15/15/text.pdf

[5] Wang et al., “Image Quality Assessment: From Error Visibility to Structural Similarity”, IEEE Transactions on Image Processing, 13:4 (2004) (Date of access: 25.01.2023) https://www.researchgate.net/publication/3327793_Image_Quaity_Assessment_From_Error_Visibility_to_Structural_Similarity | DOI

[6] A. Alizar, «Vyglyadit pokhozhe». Kak rabotaet pertseptivnyi khesh, Khabr, (Data dostupa: 21.01.2023) https://habr.com/ru/articles/120562/

[7] J. Wang et al., “Learning Fine-Grained Image Similarity with Deep Ranking”, 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014, arXiv: (Date of access: 22.01.2023) 1404.4661

[8] TORCH.NN, PyTorch, (Date of access: 23.02.2023) https://pytorch.org/docs/stable/nn.html

[9] G.M. Krekov i dr., Imitatsionnoe modelirovanie v zadachakh opticheskogo distantsionnogo zondirovaniya, Nauka, Novosibirsk, 1988, 165 pp.

[10] N.A. Andriyanov, Dvazhdy stokhasticheskie avtoregressionnye modeli izobrazhenii, dis. ... kand. tekhn. nauk: 05.13.18, Ulyanovsk, 2017, 186 pp.

[11] Perekrestnaya proverka: otsenka proizvoditelnosti, Scikitlearn, (Data dostupa: 24.02.2023) https://scikit-learn.ru/3-1-cross-validation-evaluating-estimator-performance/