Nonlinear mathematical model of the heat and mass transfer process in diamond thermochemical processing technologies
Problemy fiziki, matematiki i tehniki, no. 3 (2023), pp. 75-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

A non-stationary nonlinear axisymmetric model of the process of laser thermochemical processing of diamond has been developed. The values of temperature and diffusion coefficients in the three-phase system “hydrogen–metal–diamond” are calculated. The diffusion coefficients are determined and the diamond removal rate is estimated in the range of heat source power densities $q=10^4$$10^7$ W/m$^2$ and metal coating thicknesses $h=10$ nm to $1$ $\mu$m.
Keywords: laser processing, diamond
Mots-clés : diffusion, carbon.
@article{PFMT_2023_3_a13,
     author = {E. B. Shershnev},
     title = {Nonlinear mathematical model of the heat and mass transfer process in diamond thermochemical processing technologies},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {75--80},
     publisher = {mathdoc},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2023_3_a13/}
}
TY  - JOUR
AU  - E. B. Shershnev
TI  - Nonlinear mathematical model of the heat and mass transfer process in diamond thermochemical processing technologies
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2023
SP  - 75
EP  - 80
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2023_3_a13/
LA  - ru
ID  - PFMT_2023_3_a13
ER  - 
%0 Journal Article
%A E. B. Shershnev
%T Nonlinear mathematical model of the heat and mass transfer process in diamond thermochemical processing technologies
%J Problemy fiziki, matematiki i tehniki
%D 2023
%P 75-80
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2023_3_a13/
%G ru
%F PFMT_2023_3_a13
E. B. Shershnev. Nonlinear mathematical model of the heat and mass transfer process in diamond thermochemical processing technologies. Problemy fiziki, matematiki i tehniki, no. 3 (2023), pp. 75-80. http://geodesic.mathdoc.fr/item/PFMT_2023_3_a13/

[1] A.Yu. Mityagin, A.A. Altukhov, A.B. Mityagina, “Tekhnologiya i oborudovanie dlya obrabotki almaznykh materialov sovremennoi tekhniki”, Tekhnologiya i konstruirovanie v elektronnoi apparature, 2009, no. 1, 53–58

[2] A.P. Grigorev, S.U. Lifshits, P.P. Shamaev, “Mekhanizm gidrirovaniya ugleroda v prisutstvii nikelya, zheleza i platiny”, Kinetika i kataliz, 18:4 (1977), 948–952

[3] V.A. Emelyanov i dr., “Izuchenie vliyaniya parametrov obrabotki na protekanie poverkhnostnykh nanoprotsessov pri formoobrazovanii sinteticheskikh almazov”, Izvestiya Gomelskogo gosudarstvennogo universiteta imeni F. Skoriny, 2021, no. 6 (129), 159–163 | Zbl

[4] V.A. Emelyanov, E.B. Shershnev, A.N Kupo, S.I. Sokolov, “Termokhimicheskaya lazernaya obrabotka monokristallov almaza”, Kvantovaya elektronika, materialy XIII Mezhdunar. nauch.-tekhn. konferentsii (Minsk, 22–26 noyabrya 2021 g.), BGU, NII prikladnykh fizicheskikh problem im. A.N. Sevchenko BGU, In-t fiziki im. B.I. Stepanova NAN Bel, eds. M.M. Kugeiko (otv. red.), A.A. Afonenko, A.V. Barkova, BGU, Minsk, 2021, 382–385

[5] A.M. Prokhorov i dr., Vzaimodeistvie lazernogo izlucheniya s metallami, Academiei, Bukharest; Nauka, M., 1988, 537 pp.

[6] V.P. Kozlov, Dvumernye osesimmetrichnye nestatsionarnye zadachi teploprovodnosti, ed. A.G. Shashkov, Nauka i tekhnika, Minsk, 1986, 392 pp.

[7] G.V. Kuznetsov, M.A. Sheremet, Raznostnye metody resheniya zadach teploprovodnosti, uchebnoe posobie, Izd-vo TPU, Tomsk, 2007, 172 pp.

[8] N. V. Novikov (red.), Fizicheskie svoistva almaza. Spravochnik, Navukova dumka, 1987, 188 pp.