Investigation of the cross-correlation of spectral components of cavitation noise
Problemy fiziki, matematiki i tehniki, no. 3 (2023), pp. 69-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of the study of the cross-correlation of the spectral components of cavitation noise (CN), in particular, the fundamental frequency, i. e. frequency $f_0$ of the ultrasonic field, subharmonics, harmonics of the fundamental frequency, the continuous component of the CN, and a number of others are proposed. It has been established that the fundamental frequency correlates weakly with other NC components, i. e. the relationship $f_0$ with the other frequencies is characterized by a low correlation coefficient. A linear relationship has been found between the harmonics of the fundamental frequency, the continuous component of the spectrum, and the integral power of cavitation noise.
Mots-clés : cavitation, cavitation noise
Keywords: spectral components, correlation.
@article{PFMT_2023_3_a12,
     author = {V. S. Minchuk and A. Yu. Perkhunova and V. S. Gavrilyuk and N. V. Dezhkunov},
     title = {Investigation of the cross-correlation of spectral components of cavitation noise},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {69--74},
     publisher = {mathdoc},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2023_3_a12/}
}
TY  - JOUR
AU  - V. S. Minchuk
AU  - A. Yu. Perkhunova
AU  - V. S. Gavrilyuk
AU  - N. V. Dezhkunov
TI  - Investigation of the cross-correlation of spectral components of cavitation noise
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2023
SP  - 69
EP  - 74
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2023_3_a12/
LA  - ru
ID  - PFMT_2023_3_a12
ER  - 
%0 Journal Article
%A V. S. Minchuk
%A A. Yu. Perkhunova
%A V. S. Gavrilyuk
%A N. V. Dezhkunov
%T Investigation of the cross-correlation of spectral components of cavitation noise
%J Problemy fiziki, matematiki i tehniki
%D 2023
%P 69-74
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2023_3_a12/
%G ru
%F PFMT_2023_3_a12
V. S. Minchuk; A. Yu. Perkhunova; V. S. Gavrilyuk; N. V. Dezhkunov. Investigation of the cross-correlation of spectral components of cavitation noise. Problemy fiziki, matematiki i tehniki, no. 3 (2023), pp. 69-74. http://geodesic.mathdoc.fr/item/PFMT_2023_3_a12/

[1] M.G. Sirotyuk, Akusticheskaya kavitatsiya, Rossiiskaya akad. nauk, Dalnevostochnoe otdelenie, Tikhookeanskii tekhnologicheskii in-t im V.I. Ilichev, eds. V.A. Akulichev, L.R. Gavrilov, Nauka, M., 2008, 270 pp.

[2] V.N. Khmelev i dr., Primenenie ultrazvuka vysokoi intensivnosti v promyshlennosti, Izd-vo AlGTU im. I.I. Polzunova, Biisk, 2010, 250 pp.

[3] J. A. Gallego-Jarez, K.F. Graff, M. Lucas (eds.), Power Ultrasonics: Applications of High-Intensity Ultrasound, A volume in Woodhead Publishing Series in Electronic and Optical Materials, 2-nd Edition, 2023, 921 pp. | DOI

[4] N.P.K. Ellens, K. Hynynen, “High-intensity focused ultrasound for medical therapy”, Power Ultrasonics: Applications of High-Intensity Ultrasound, 2-nd Edition, eds. J.A. Gallego-Jarez, K.F. Graff, 2023, 661–693 | DOI

[5] M.R. Beili i dr., “Fizicheskii mekhanizm terapevticheskogo effekta ultrazvuka (Obzor)”, Akusticheskii zhurnal, 2003, no. 4, 437

[6] A.L. Nikolaev i dr., “Primenenie tverdofaznykh neodnorodnostei dlya povysheniya effektivnosti ultrazvukovoi terapii onkologicheskikh zabolevanii”, Akusticheskii zhurnal, 55:4–5 (2009), 565–574

[7] E. Beguin, S. Shrivastava, N. Dezhkunov et al., “Direct evidence of multi-bubble sonoluminescence using therapeutic ultrasound and microbubbles”, ACS Applied Materials and Interfaces, 11:12 (2019), 19913–19919 | DOI

[8] L.R. Gavrilov, Fokusirovnnyi ultrazvuk vysokoi intensivnosti v meditsine, ed. V. A. Akulichev, FAZIS, M., 2013, 656 pp.

[9] K.I. Morton, G.R. ter Haar, I.J. Stratford, C.R. Hill, “Subharmonic emission as an indicator of ultrasonically-induced biological damage”, Ultrasound in Med. and Biol., 9:6 (1983), 629–633 | DOI

[10] Younggyu Son, Myunghee Lim, Jeehyeong Khim, Muthupandian Ashokkumar, “Acoustic emission spectra and sonochemical activity in a 36 kHz sonoreactor”, Ultrasonics Sonochemistry, 19 (2012), 16–21 | DOI

[11] Measurement of cavitation noise in ultrasonic baths and ultrasonic reactors, Technical Specification IEC TS 63001, 1-st Edition, 2019, 28 pp.

[12] N.V. Dezhkunov, A. Francescutto, L. Serpe, R. Canaparo, G. Cravotto, “Sonoluminescence and acoustic emission spectra at different stages of cavitation zone development”, Ultrasonics Sonochemistry, 40:1 (2018), 104–109 | DOI

[13] A.V. Kotukhov i dr., “Issledovanie korrelyatsii zvukolyuminestsentsii i kavitatsionnogo shuma v pole fokusiruyuschego izluchatelya”, Problemy fiziki, matematiki i tekhniki, 2020, no. 4 (45), 32–36

[14] V.D. Egoshina i dr., “Kavitatsionnaya prochnost vodnykh suspenzii poristykh kremnievykh nanochastits s razlichnoi stepenyu gidrofobnosti poverkhnosti”, Akusticheskii zhurnal, 69:1 (2023), 92–100

[15] Pengfei Wu, Xiuming Wang, Weijun Lin, Lixin Bai, “Acoustic characterization of cavitation intensity: A review”, Journal of Ultrasonics Sonochemistry, 82, Jan. (2022), 105878 | DOI