Mots-clés : $\sigma_3$-soluble group
@article{PFMT_2023_2_a9,
author = {I. M. Dergacheva and I. P. Shabalina and E. A. Zadorozhnyuk and I. A. Sobol'},
title = {On $\sigma_3$-nilpotent finite groups},
journal = {Problemy fiziki, matematiki i tehniki},
pages = {52--55},
year = {2023},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PFMT_2023_2_a9/}
}
I. M. Dergacheva; I. P. Shabalina; E. A. Zadorozhnyuk; I. A. Sobol'. On $\sigma_3$-nilpotent finite groups. Problemy fiziki, matematiki i tehniki, no. 2 (2023), pp. 52-55. http://geodesic.mathdoc.fr/item/PFMT_2023_2_a9/
[1] A.N. Skiba, “O $\sigma$-svoistvakh konechnykh grupp I”, Problemy fiziki, matematiki i tekhniki, 2014, no. 4 (21), 89–96
[2] A.N. Skiba, “O $\sigma$-svoistvakh konechnykh grupp II”, Voprosy fiziki, matematiki i tekhniki, 3:24 (2015), 67–81
[3] A.N. Skiba, “O $\sigma$-svoistvakh konechnykh grupp III”, Problemy fiziki, matematiki i tekhniki, 2016, no. 1 (26), 52–62
[4] A.N. Skiba, “On some results in the theory of finite partially soluble groups”, Commun. Math. Stat., 4:3 (2016), 281–309 | DOI | MR | Zbl
[5] A.N. Skiba, “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl
[6] A.N. Skiba, “Some characterizations of finite $\sigma$-soluble $P\sigma T$-groups”, J. Algebra, 495:1 (2018), 114–129 | DOI | MR | Zbl
[7] A.N. Skiba, “On sublattices of the subgroup lattice defined by formation Fitting sets”, J. Algebra, 550 (2020), 69–85 | DOI | MR | Zbl
[8] A-Ming Liu, W. Guo, I.N. Safonova, A.N. Skiba, “G-covering subgroup systems for some classes of $\sigma$-soluble groups”, J. Algebra, 585 (2021), 280–293 | DOI | MR
[9] Xin-Fang Zhang, W. Guo, I.N. Safonova, A.N. Skiba, “A Robinson description of finite $P\sigma T$-groups”, J. Algebra, 2023 | DOI | MR
[10] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992 | MR
[11] A.N. Skiba, “A generalization of a Hall theorem”, J. Algebra and its Application, 15:5 (2016) | DOI | MR