Application of PWM signals to generate low-temperature atmospheric plasma
Problemy fiziki, matematiki i tehniki, no. 2 (2023), pp. 31-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

The use of pulse-width modulated signals for generating low-temperature atmospheric plasma in an inert gas environment is studied. The results of studies of the energy consumption of a low-temperature plasma generation system depending on the fill factor, as well as the pulse repetition rate, are presented. The system operating modes are identified, in which the minimum energy consumption is achieved, and possible ways to control the low-temperature plasma generation system to obtain the necessary plasma properties are determined.
Keywords: low-temperature atmospheric pressure plasma, parameters of control signals for plasma generation, energy consumption of devices for generating low-temperature atmospheric pressure plasma.
@article{PFMT_2023_2_a5,
     author = {A. N. Osipov and E. N. Kalenkovich and V. A. Rokach and T. Ma},
     title = {Application of {PWM} signals to generate low-temperature atmospheric plasma},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {31--38},
     publisher = {mathdoc},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2023_2_a5/}
}
TY  - JOUR
AU  - A. N. Osipov
AU  - E. N. Kalenkovich
AU  - V. A. Rokach
AU  - T. Ma
TI  - Application of PWM signals to generate low-temperature atmospheric plasma
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2023
SP  - 31
EP  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2023_2_a5/
LA  - ru
ID  - PFMT_2023_2_a5
ER  - 
%0 Journal Article
%A A. N. Osipov
%A E. N. Kalenkovich
%A V. A. Rokach
%A T. Ma
%T Application of PWM signals to generate low-temperature atmospheric plasma
%J Problemy fiziki, matematiki i tehniki
%D 2023
%P 31-38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2023_2_a5/
%G ru
%F PFMT_2023_2_a5
A. N. Osipov; E. N. Kalenkovich; V. A. Rokach; T. Ma. Application of PWM signals to generate low-temperature atmospheric plasma. Problemy fiziki, matematiki i tehniki, no. 2 (2023), pp. 31-38. http://geodesic.mathdoc.fr/item/PFMT_2023_2_a5/

[1] Reema, R.R. Khanikar, H.K. Bailung, K. Sankaranarayanan, “Review of the cold atmospheric plasma technology application in food, disinfection, and textiles: A way forward for achieving circular economy”, Front. Phys., 10 (2022), 942952 | DOI

[2] H.-R. Metelmann, “Clinical plasma medicine: State and perspectives of in vivo application of cold atmospheric plasma”, Contrib. Plasma Phys., ed. K.D. Weltmann, British Medical Journal, UK, 2014, 104–117

[3] A. Kumar et al., “Cold atmospheric plasma technology for removal of organic micropollutants from wastewater - a review”, The European Physical Journal D, 75 (2021), 283 | DOI

[4] Ya.S. Itskhoki, N.I. Ovchinikov, Impulsnye i tsifrovye ustroistva, «Sovetskoe radio», M., 1972, 592 pp.

[5] R. Mek, Impulsnye istochniki pitaniya. Teoreticheskie osnovy proektirovaniya i rukovodstvo po prakticheskomu primeneniyu, per. s angl., Izdatelskii dom «Dodeka-XXI», M., 2008, 272 pp.

[6] H.R. Kang et al., “Effects of Dielectric Tube Shape and PinElectrode Diameter on the Plasma Plume in Atmospheric Pressure Helium Plasma Jet”, IEEE Trans. Plasma Sci., 45 (2017), 691–697 | DOI

[7] C.-F. Su et al., “Development of a High-Power-Factor Power Supply for an Atmospheric-Pressure Plasma Jet”, Electronics, 10 (2021), 2119 | DOI

[8] I.S. Gonorovskii, Radiosignaly i perekhodnye yavleniya v radiotsepyakh, Svyazizdat, M., 1954, 326 pp.