Stabilization of technological cycle parameters when constructing feedback control
Problemy fiziki, matematiki i tehniki, no. 2 (2023), pp. 83-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

An approach for solving problem of stabilization of technological cycle operation parameters is proposed. The approach is based on applying the methods of neural network modeling of controlled parameters of technological operations. Modern approaches for solving such problems are considered; the procedure of hybrid intellectual adaptive control system creation is demonstrated. The proposed approach allows automating processes of development and operation of hybrid intellectual computer systems when implementing innovative solutions in the field of traffic flows control, automation in the most advanced branches of industry and agriculture.
Keywords: neural network methods, parameters stabilization, adaptive control, neuroregulator models.
@article{PFMT_2023_2_a13,
     author = {V. S. Smorodin and V. A. Prohorenko},
     title = {Stabilization of technological cycle parameters when constructing feedback control},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {83--88},
     publisher = {mathdoc},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2023_2_a13/}
}
TY  - JOUR
AU  - V. S. Smorodin
AU  - V. A. Prohorenko
TI  - Stabilization of technological cycle parameters when constructing feedback control
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2023
SP  - 83
EP  - 88
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2023_2_a13/
LA  - ru
ID  - PFMT_2023_2_a13
ER  - 
%0 Journal Article
%A V. S. Smorodin
%A V. A. Prohorenko
%T Stabilization of technological cycle parameters when constructing feedback control
%J Problemy fiziki, matematiki i tehniki
%D 2023
%P 83-88
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2023_2_a13/
%G ru
%F PFMT_2023_2_a13
V. S. Smorodin; V. A. Prohorenko. Stabilization of technological cycle parameters when constructing feedback control. Problemy fiziki, matematiki i tehniki, no. 2 (2023), pp. 83-88. http://geodesic.mathdoc.fr/item/PFMT_2023_2_a13/

[1] V.A. Prokhorenko i dr., “Avtomatizatsiya proizvodstvennoi deyatelnosti v ramkakh Ekosistemy OSTIS”, Tekhnologiya kompleksnoi podderzhki zhiznennogo tsikla semanticheski sovmestimykh intellektualnykh kompyuternykh sistem novogo pokoleniya, monografiya, Gl. 7.7., ed. V.V. Golenkov, BGUIR, Minsk, 2023, 805–830 | Zbl

[2] V.S. Smorodin, I.V. Maksimei, Metody i sredstva imitatsionnogo modelirovaniya tekhnologicheskikh protsessov proizvodstva, monografiya, M-vo obrazovaniya RB, Gomelskii gosudarstvennyi universitet imeni Frantsiska Skoriny, GGU im. F. Skoriny, Gomel, 2007, 369 pp.

[3] O. Omidvar, D.L. Elliott (eds.), Neural Systems for Control, Academic Press, New York, 1997, 358 pp.

[4] D.A. White, D.A. Sofge, Handbook of Intelligent Control. Neural, Fuzzy, and Adaptive Approaches, Van Nostrand Reinhold, 1992

[5] M.T. Hagan, H.B. Demuth, “Neural networks for control”, Proceedings of the American Control Conference, 3 (1999), 1642–1656

[6] V. Smorodin, V. Prokhorenko, “Control Of A Technological Cycle Of Production Process Based On A NeuroController Model”, Open semantic technologies for intelligent systems, 2019, no. 3, 251–256

[7] V. Smorodin, V. Prokhorenko, “Software-Technological Complex For Adaptive Control Of A Production Cycle Of Robotic Manufacturing”, Open semantic technologies for intelligent systems, 2022, no. 6, 401–404

[8] V. Smorodin, V. Prokhorenko, “Adaptive Control Of Robotic Production Systems”, Open semantic technologies for intelligent systems, 2020, no. 4, 161–166

[9] D.S. Ivanyuk, “Neiro-PID-regulyator POU”, Vestnik Brestskogo gosudarstvennogo tekhnicheskogo universiteta, 2014, no. 5, 35–40