Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2023_2_a10, author = {P. G. Potseiko}, title = {On rational conjugate {Fej\'er} sums on an interval and approximations of the conjugate function}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {56--67}, publisher = {mathdoc}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2023_2_a10/} }
TY - JOUR AU - P. G. Potseiko TI - On rational conjugate Fej\'er sums on an interval and approximations of the conjugate function JO - Problemy fiziki, matematiki i tehniki PY - 2023 SP - 56 EP - 67 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2023_2_a10/ LA - ru ID - PFMT_2023_2_a10 ER -
P. G. Potseiko. On rational conjugate Fej\'er sums on an interval and approximations of the conjugate function. Problemy fiziki, matematiki i tehniki, no. 2 (2023), pp. 56-67. http://geodesic.mathdoc.fr/item/PFMT_2023_2_a10/
[1] F.D. Gakhov, Kraevye zadachi, Gos. izd-vo fiz.-mat. lit-ry, M., 1958, 543 pp.
[2] N.I. Muskhelishvili, Singulyarnye integralnye uravneniya, 3-e izd., Nauka, M., 1968, 513 pp.
[3] N.K. Bari, Trigonometricheskie ryady, Fizmatlit, M., 1961, 936 pp.
[4] A. Zigmund, Trigonometricheskie ryady, V 2-kh tomakh, v. 1, Mir, M., 1965, 616 pp.
[5] I.I. Privalov, “Sur les fonctions conjuguees”, Bulletin de la Societe Mathematique de France, 44 (1916), 100–103 | MR
[6] I.I. Privalov, “K teorii sopryazhennykh trigonometricheskikh ryadov”, Matematicheskii sbornik, 1923, no. 2, 224–228
[7] A.N. Kolmogorov, “Sur les fonctions harmoniques conjuguees et les series de Fourier”, Fundamenta Mathematicae, 7 (1925), 24–29 | DOI
[8] M. Riesz, “Les fonctions conjuguees et les series de Fourier”, Comptes rendus de l'Acadeemie des Sciences, 178 (1924), 1464–1467
[9] M. Riesz, “Sur les fonctions conjuguees”, Mathematische Zeitschrift, 27 (1927), 218–244 | DOI | MR
[10] V.P. Motornyi, “Priblizhenie nekotorykh klassov singulyarnykh integralov algebraicheskimi mnogochlenami”, Ukrainskii matematicheskii zhurnal, 53:3 (2001), 331–345 | Zbl
[11] V.P. Motornyi, “Priblizhenie odnogo klassa singulyarnykh integralov algebraicheskimi mnogochlenami s uchetom polozheniya tochki na otrezke”, Trudy Matematicheskogo instituta imeni V. A. Steklova, 232, 2001, 268–285 | Zbl
[12] N.K. Bari, “O nailuchshem priblizhenii trigonometricheskimi polinomami dvukh sopryazhennykh funktsii”, Izvestiya AN SSSR. Ser. matem., 19:5 (1955), 285–302 | Zbl
[13] S.B. Stechkin, “O nailuchshem priblizhenii sopryazhennykh funktsii trigonometricheskimi polinomami”, Izvestiya AN SSSR. Ser. matem., 20:2 (1956), 197–206 | Zbl
[14] V.R. Misyuk, A.A. Pekarskii, “Sopryazhennye funktsii na otrezke i sootnosheniya dlya ikh nailuchshikh ravnomernykh polinomialnykh priblizhenii”, Izvestiya NAN Belarusi, Ser. fiziko-matematicheskikh nauk, 2015, no. 2, 37–40
[15] V.N. Rusak, I.V. Rybachenko, “Ravnomernaya ratsionalnaya approksimatsiya sopryazhennykh funktsii”, Vestnik BGU. Ser. 1. Matematika i informatika, 3 (2013), 83–86
[16] T.S. Mardvilko, A.A. Pekarskii, “Conjugate Functions on the Closed Interval and Their Relationship with Uniform Rational and Piecewise Polynomial Approximations”, Math. Notes, 99:3 (2016), 272–283 | DOI | MR | Zbl
[17] E.A. Rovba, P.G. Potseiko, “Priblizheniya sopryazhennykh funktsii chastichnymi summami sopryazhennykh ryadov Fure po odnoi sisteme algebraicheskikh drobei Chebysheva - Markova”, Izvestiya vuzov. Matematika, 2020, no. 9, 68–84
[18] V.N. Rusak, “Ob odnom metode priblizheniya ratsionalnymi funktsiyami”, Vestsi AN BSSR. Ser. fiz.-mat. navuk, 3 (1978), 15–20 | Zbl
[19] E.A. Rovba, “Ratsionalnye integralnye operatory na otrezke”, Vestnik BGU. Ser. 1. Mat. i inf., 1:1 (1996), 34–39
[20] E.A. Rovba, “Ob odnom pryamom metode v ratsionalnoi approksimatsii”, Doklady AN BSSR, 23:11 (1979), 968–971 | Zbl
[21] S. Takenaka, “On the orthogonal functions and a new formula of interpolations”, Japanese Journal of Mathematics, 2 (1925), 129–145 | DOI
[22] F. Malmquist, “Sur la determination d'une classe functions analytiques par leurs dans un ensemble donne de points”, Compte Rendus Sixieme Congres math. scand. Kopenhagen, Denmark, 2:1 (1925), 253–259
[23] M.M. Dzhrbashyan, “K teorii ryadov Fure po ratsionalnym funktsiyam”, Izvestiya Akademii nauk Armyanskoi SSR. Ser. Fiziko-matematicheskaya, 9:7 (1956), 3–28 | Zbl
[24] K.A. Smotritskii, “O priblizhenii differentsiruemykh v smysle Rimana - Liuvillya funktsii”, Izvestiya NAN Belarusi. Ser. fiz.-mat. nauk, 4 (2002), 42–47
[25] P.G. Patseika, Y.A. Rouba, K.A. Smatrytski, “On one rational integral operator of Fourier - Chebyshev type and approximation of Markov functions”, Journal of the Belarusian State University. Mathematics and Informatics, 2 (2020), 6–27 | DOI
[26] P.G. Potseiko, E.A. Rovba, “Priblizheniya na klassakh integralov Puassona ratsionalnymi integralnymi operatorami Fure - Chebysheva”, Sibirskii matematicheskii zhurnal, 62:2 (2021), 362–386 | Zbl
[27] P.G. Potseiko, E.A. Rovba, “Sopryazhennyi ratsionalnyi operator Fure - Chebysheva i ego approksimatsionnye svoistva”, Izvestiya vuzov. Matematika, 2022, no. 3, 44–60
[28] L. Fejer, “Untersuchungen uber Fouriersche Reihen”, Mathematische Annalen, 58 (1904), 51–69 | DOI | MR
[29] H. Lebesgue, “Sur les integrales singulieres”, Annales de la faculte des sciences de Toulouse 3e serie, 1 (1909), 25–117 | MR
[30] S. Bernstein, Sur l'ordre de la meilleure approximation des fonctions continues par des polynomes de degre donne, Hayez, imprimeur des academies royales, Bruxelles, 1912, 104 pp.
[31] S.M. Nikolskii, “Ob asimptoticheskom povedenii ostatka pri priblizhenii funktsii, udovletvoryayuschikh usloviyu Lipshitsa, summami Feiera”, Izvestiya AN SSSR. Ser. matem., 4:6 (1940), 501–508 | Zbl
[32] A. Zygmund, “On the degree of approximation of functions by Fejer means”, Bulletin of the American Mathematical Society, 51 (1945), 274–278 | DOI | MR | Zbl
[33] O.A. Novikov, O.G. Rovenskaya, “Priblizhenie klassov integralov Puassona summami Feiera”, Donbasskii gos. ped. untet, Kompyuternye issledovaniya i modelirovanie, 7:4 (2015), 813–819
[34] S.M. Nikolskii, “Priblizhenie periodicheskikh funktsii trigonometricheskimi mnogochlenami”, Trudy matematicheskogo in-ta im. V.A. Steklova, 15, 1945, 3–76
[35] G. Alexits, “Sur l'ordre de grandeur de l'approximation d'une fonction p'eriodique par les sommes de Fejer”, Acta Mathematica Academiae Scientiarum Hungaricae, 3:1–2 (1952), 29–42 | DOI | MR | Zbl
[36] A.V. Efimov, “O priblizhenii nekotorykh klassov nepreryvnykh funktsii summami Fure i summami Feiera”, Izvestiya AN SSSR. Ser. matem., 22:1 (1958), 81–116 | Zbl
[37] A.V. Efimov, “Priblizhenie sopryazhennykh funktsii summami Feiera”, Uspekhi matematicheskikh nauk, 14:1 (85) (1959), 183–188 | Zbl
[38] S.B. Stechkin, “O priblizhenii periodicheskikh funktsii summami Feiera”, Tr. MIAN SSSR, 62, 1961, 48–60 | Zbl
[39] P.G. Potseiko, E.A. Rovba, “O summakh Feiera sopryazhennykh ratsionalnykh ryadov Fure - Chebysheva i priblizheniyakh nekotorykh funktsii”, Sistemy kompyuternoi matematiki i ikh prilozheniya, materialy XXII mezhdunar. nauch. konf. (Smolensk, 28–29 maya 2021 g.), eds. K.M. Rasulov i dr., SmolGU, Smolensk, 2021, 300–321
[40] K.N. Lungu, “O nailuchshikh priblizheniyakh ratsionalnymi funktsiyami s fiksirovannym chislom polyusov”, Matematicheskii sbornik, 86 (128):2 (10) (1971), 314–324 | Zbl
[41] K.N. Lungu, “O nailuchshikh priblizheniyakh ratsionalnymi funktsiyami s fiksirovannym chislom polyusov”, Sibirskii matematicheskii zhurnal, 15:2 (1984), 151–160
[42] V.N. Rusak, Ratsionalnye funktsii kak apparat priblizheniya, BGU, Minsk, 1979, 153 pp.
[43] Yu.V. Sidorov, M.V. Fedoryuk, M.I. Shabunin, Lektsii po teorii funktsii kompleksnogo peremennogo, Nauka, Gl. red. fiz-mat. lit-ry, M., 1989, 480 pp.
[44] M.A. Evgrafov, Asimptoticheskie otsenki i tselye funktsii, Nauka, M., 1979, 320 pp.
[45] M.V. Fedoryuk, Asimptotika. Integraly i ryady, Gl. red. fizmat. lit-ry, M., 1987, 544 pp.
[46] S.N. Bernshtein, Ekstremalnye svoistva polinomov i nailuchshee priblizhenie nepreryvnykh funktsii odnoi veschestvennoi peremennoi, v. 1, Glavnaya redaktsiya obschetekhnicheskoi literatury, M.–L., 1937, 200 pp.