On rational conjugate Fej\'er sums on an interval and approximations of the conjugate function
Problemy fiziki, matematiki i tehniki, no. 2 (2023), pp. 56-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

The approximations of the conjugate function on the segment $[-1, 1]$ by Fejér sums of conjugate rational integral Fourier – Chebyshev operators with restrictions on the number of geometrically different poles are investigated. An integral representation of the corresponding approximations is established. An integral representation of approximations, estimation of pointwise approximations and uniform approximations with a certain majorant are obtained for a conjugate function with density $(1-x)^\gamma$, $\gamma\in(1/2,1)$. Its asymptotic expression for $n\to\infty$, depending on the parameters of the approximating function is established. In the final part, the optimal values of parameters at which the highest rate of decreasing majorant is provided are found. As a corollary, the estimates of approximations of conjugate function on the segment $[-1, 1]$ by Fejér sums conjugate polynomial Fourier – Chebyshev series are found.
Keywords: conjugate function, Fourier – Chebyshev series, Fejér sums, function with power singularity, pointwise and uniform approximations, best approximations, asymptotic estimates.
@article{PFMT_2023_2_a10,
     author = {P. G. Potseiko},
     title = {On rational conjugate {Fej\'er} sums on an interval and approximations of the conjugate function},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {56--67},
     publisher = {mathdoc},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2023_2_a10/}
}
TY  - JOUR
AU  - P. G. Potseiko
TI  - On rational conjugate Fej\'er sums on an interval and approximations of the conjugate function
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2023
SP  - 56
EP  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2023_2_a10/
LA  - ru
ID  - PFMT_2023_2_a10
ER  - 
%0 Journal Article
%A P. G. Potseiko
%T On rational conjugate Fej\'er sums on an interval and approximations of the conjugate function
%J Problemy fiziki, matematiki i tehniki
%D 2023
%P 56-67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2023_2_a10/
%G ru
%F PFMT_2023_2_a10
P. G. Potseiko. On rational conjugate Fej\'er sums on an interval and approximations of the conjugate function. Problemy fiziki, matematiki i tehniki, no. 2 (2023), pp. 56-67. http://geodesic.mathdoc.fr/item/PFMT_2023_2_a10/

[1] F.D. Gakhov, Kraevye zadachi, Gos. izd-vo fiz.-mat. lit-ry, M., 1958, 543 pp.

[2] N.I. Muskhelishvili, Singulyarnye integralnye uravneniya, 3-e izd., Nauka, M., 1968, 513 pp.

[3] N.K. Bari, Trigonometricheskie ryady, Fizmatlit, M., 1961, 936 pp.

[4] A. Zigmund, Trigonometricheskie ryady, V 2-kh tomakh, v. 1, Mir, M., 1965, 616 pp.

[5] I.I. Privalov, “Sur les fonctions conjuguees”, Bulletin de la Societe Mathematique de France, 44 (1916), 100–103 | MR

[6] I.I. Privalov, “K teorii sopryazhennykh trigonometricheskikh ryadov”, Matematicheskii sbornik, 1923, no. 2, 224–228

[7] A.N. Kolmogorov, “Sur les fonctions harmoniques conjuguees et les series de Fourier”, Fundamenta Mathematicae, 7 (1925), 24–29 | DOI

[8] M. Riesz, “Les fonctions conjuguees et les series de Fourier”, Comptes rendus de l'Acadeemie des Sciences, 178 (1924), 1464–1467

[9] M. Riesz, “Sur les fonctions conjuguees”, Mathematische Zeitschrift, 27 (1927), 218–244 | DOI | MR

[10] V.P. Motornyi, “Priblizhenie nekotorykh klassov singulyarnykh integralov algebraicheskimi mnogochlenami”, Ukrainskii matematicheskii zhurnal, 53:3 (2001), 331–345 | Zbl

[11] V.P. Motornyi, “Priblizhenie odnogo klassa singulyarnykh integralov algebraicheskimi mnogochlenami s uchetom polozheniya tochki na otrezke”, Trudy Matematicheskogo instituta imeni V. A. Steklova, 232, 2001, 268–285 | Zbl

[12] N.K. Bari, “O nailuchshem priblizhenii trigonometricheskimi polinomami dvukh sopryazhennykh funktsii”, Izvestiya AN SSSR. Ser. matem., 19:5 (1955), 285–302 | Zbl

[13] S.B. Stechkin, “O nailuchshem priblizhenii sopryazhennykh funktsii trigonometricheskimi polinomami”, Izvestiya AN SSSR. Ser. matem., 20:2 (1956), 197–206 | Zbl

[14] V.R. Misyuk, A.A. Pekarskii, “Sopryazhennye funktsii na otrezke i sootnosheniya dlya ikh nailuchshikh ravnomernykh polinomialnykh priblizhenii”, Izvestiya NAN Belarusi, Ser. fiziko-matematicheskikh nauk, 2015, no. 2, 37–40

[15] V.N. Rusak, I.V. Rybachenko, “Ravnomernaya ratsionalnaya approksimatsiya sopryazhennykh funktsii”, Vestnik BGU. Ser. 1. Matematika i informatika, 3 (2013), 83–86

[16] T.S. Mardvilko, A.A. Pekarskii, “Conjugate Functions on the Closed Interval and Their Relationship with Uniform Rational and Piecewise Polynomial Approximations”, Math. Notes, 99:3 (2016), 272–283 | DOI | MR | Zbl

[17] E.A. Rovba, P.G. Potseiko, “Priblizheniya sopryazhennykh funktsii chastichnymi summami sopryazhennykh ryadov Fure po odnoi sisteme algebraicheskikh drobei Chebysheva - Markova”, Izvestiya vuzov. Matematika, 2020, no. 9, 68–84

[18] V.N. Rusak, “Ob odnom metode priblizheniya ratsionalnymi funktsiyami”, Vestsi AN BSSR. Ser. fiz.-mat. navuk, 3 (1978), 15–20 | Zbl

[19] E.A. Rovba, “Ratsionalnye integralnye operatory na otrezke”, Vestnik BGU. Ser. 1. Mat. i inf., 1:1 (1996), 34–39

[20] E.A. Rovba, “Ob odnom pryamom metode v ratsionalnoi approksimatsii”, Doklady AN BSSR, 23:11 (1979), 968–971 | Zbl

[21] S. Takenaka, “On the orthogonal functions and a new formula of interpolations”, Japanese Journal of Mathematics, 2 (1925), 129–145 | DOI

[22] F. Malmquist, “Sur la determination d'une classe functions analytiques par leurs dans un ensemble donne de points”, Compte Rendus Sixieme Congres math. scand. Kopenhagen, Denmark, 2:1 (1925), 253–259

[23] M.M. Dzhrbashyan, “K teorii ryadov Fure po ratsionalnym funktsiyam”, Izvestiya Akademii nauk Armyanskoi SSR. Ser. Fiziko-matematicheskaya, 9:7 (1956), 3–28 | Zbl

[24] K.A. Smotritskii, “O priblizhenii differentsiruemykh v smysle Rimana - Liuvillya funktsii”, Izvestiya NAN Belarusi. Ser. fiz.-mat. nauk, 4 (2002), 42–47

[25] P.G. Patseika, Y.A. Rouba, K.A. Smatrytski, “On one rational integral operator of Fourier - Chebyshev type and approximation of Markov functions”, Journal of the Belarusian State University. Mathematics and Informatics, 2 (2020), 6–27 | DOI

[26] P.G. Potseiko, E.A. Rovba, “Priblizheniya na klassakh integralov Puassona ratsionalnymi integralnymi operatorami Fure - Chebysheva”, Sibirskii matematicheskii zhurnal, 62:2 (2021), 362–386 | Zbl

[27] P.G. Potseiko, E.A. Rovba, “Sopryazhennyi ratsionalnyi operator Fure - Chebysheva i ego approksimatsionnye svoistva”, Izvestiya vuzov. Matematika, 2022, no. 3, 44–60

[28] L. Fejer, “Untersuchungen uber Fouriersche Reihen”, Mathematische Annalen, 58 (1904), 51–69 | DOI | MR

[29] H. Lebesgue, “Sur les integrales singulieres”, Annales de la faculte des sciences de Toulouse 3e serie, 1 (1909), 25–117 | MR

[30] S. Bernstein, Sur l'ordre de la meilleure approximation des fonctions continues par des polynomes de degre donne, Hayez, imprimeur des academies royales, Bruxelles, 1912, 104 pp.

[31] S.M. Nikolskii, “Ob asimptoticheskom povedenii ostatka pri priblizhenii funktsii, udovletvoryayuschikh usloviyu Lipshitsa, summami Feiera”, Izvestiya AN SSSR. Ser. matem., 4:6 (1940), 501–508 | Zbl

[32] A. Zygmund, “On the degree of approximation of functions by Fejer means”, Bulletin of the American Mathematical Society, 51 (1945), 274–278 | DOI | MR | Zbl

[33] O.A. Novikov, O.G. Rovenskaya, “Priblizhenie klassov integralov Puassona summami Feiera”, Donbasskii gos. ped. untet, Kompyuternye issledovaniya i modelirovanie, 7:4 (2015), 813–819

[34] S.M. Nikolskii, “Priblizhenie periodicheskikh funktsii trigonometricheskimi mnogochlenami”, Trudy matematicheskogo in-ta im. V.A. Steklova, 15, 1945, 3–76

[35] G. Alexits, “Sur l'ordre de grandeur de l'approximation d'une fonction p'eriodique par les sommes de Fejer”, Acta Mathematica Academiae Scientiarum Hungaricae, 3:1–2 (1952), 29–42 | DOI | MR | Zbl

[36] A.V. Efimov, “O priblizhenii nekotorykh klassov nepreryvnykh funktsii summami Fure i summami Feiera”, Izvestiya AN SSSR. Ser. matem., 22:1 (1958), 81–116 | Zbl

[37] A.V. Efimov, “Priblizhenie sopryazhennykh funktsii summami Feiera”, Uspekhi matematicheskikh nauk, 14:1 (85) (1959), 183–188 | Zbl

[38] S.B. Stechkin, “O priblizhenii periodicheskikh funktsii summami Feiera”, Tr. MIAN SSSR, 62, 1961, 48–60 | Zbl

[39] P.G. Potseiko, E.A. Rovba, “O summakh Feiera sopryazhennykh ratsionalnykh ryadov Fure - Chebysheva i priblizheniyakh nekotorykh funktsii”, Sistemy kompyuternoi matematiki i ikh prilozheniya, materialy XXII mezhdunar. nauch. konf. (Smolensk, 28–29 maya 2021 g.), eds. K.M. Rasulov i dr., SmolGU, Smolensk, 2021, 300–321

[40] K.N. Lungu, “O nailuchshikh priblizheniyakh ratsionalnymi funktsiyami s fiksirovannym chislom polyusov”, Matematicheskii sbornik, 86 (128):2 (10) (1971), 314–324 | Zbl

[41] K.N. Lungu, “O nailuchshikh priblizheniyakh ratsionalnymi funktsiyami s fiksirovannym chislom polyusov”, Sibirskii matematicheskii zhurnal, 15:2 (1984), 151–160

[42] V.N. Rusak, Ratsionalnye funktsii kak apparat priblizheniya, BGU, Minsk, 1979, 153 pp.

[43] Yu.V. Sidorov, M.V. Fedoryuk, M.I. Shabunin, Lektsii po teorii funktsii kompleksnogo peremennogo, Nauka, Gl. red. fiz-mat. lit-ry, M., 1989, 480 pp.

[44] M.A. Evgrafov, Asimptoticheskie otsenki i tselye funktsii, Nauka, M., 1979, 320 pp.

[45] M.V. Fedoryuk, Asimptotika. Integraly i ryady, Gl. red. fizmat. lit-ry, M., 1987, 544 pp.

[46] S.N. Bernshtein, Ekstremalnye svoistva polinomov i nailuchshee priblizhenie nepreryvnykh funktsii odnoi veschestvennoi peremennoi, v. 1, Glavnaya redaktsiya obschetekhnicheskoi literatury, M.–L., 1937, 200 pp.