Comparative analysis of models for estimation of hollow structures scattering characteristics
Problemy fiziki, matematiki i tehniki, no. 2 (2023), pp. 7-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

The possibility of using a model of a hollow structure with a simple shape to estimate the scattering characteristics of a hollow structure with a complex shape was investigated. The examples are given in which the scattering characteristics are calculated if a plane electromagnetic wave is incident.
Keywords: integral equation method, radio wave scattering, modeling.
@article{PFMT_2023_2_a0,
     author = {T. V. Avetisyan and J. E. Lvovich and A. P. Preobrazhensky},
     title = {Comparative analysis of models for estimation of hollow structures scattering characteristics},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {7--10},
     publisher = {mathdoc},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2023_2_a0/}
}
TY  - JOUR
AU  - T. V. Avetisyan
AU  - J. E. Lvovich
AU  - A. P. Preobrazhensky
TI  - Comparative analysis of models for estimation of hollow structures scattering characteristics
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2023
SP  - 7
EP  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2023_2_a0/
LA  - ru
ID  - PFMT_2023_2_a0
ER  - 
%0 Journal Article
%A T. V. Avetisyan
%A J. E. Lvovich
%A A. P. Preobrazhensky
%T Comparative analysis of models for estimation of hollow structures scattering characteristics
%J Problemy fiziki, matematiki i tehniki
%D 2023
%P 7-10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2023_2_a0/
%G ru
%F PFMT_2023_2_a0
T. V. Avetisyan; J. E. Lvovich; A. P. Preobrazhensky. Comparative analysis of models for estimation of hollow structures scattering characteristics. Problemy fiziki, matematiki i tehniki, no. 2 (2023), pp. 7-10. http://geodesic.mathdoc.fr/item/PFMT_2023_2_a0/

[1] E.D. Vinogradova, P.D. Smith, “Rigorous Approach to Analysis of Backscattering from 2D Open-Ended S-shaped Cavities”, Microwave Mediterranean Symposium, 2022, 1–4

[2] M. Bozorgi, “A generalized method for scattering from wide cavities with specified wave functions”, Microw Antennas Propag., 15 (2021), 69–79 | DOI

[3] K. Du, B. Li, W. Sun, H. Yang, “Electromagnetic scattering from a cavity embedded in an impedance ground plane”, Math. Methods Appl. Sci., 23 (2018) | MR

[4] A.P. Preobrazhenskii, Modelirovanie i algoritmizatsiya analiza difraktsionnykh struktur v SAPR radiolokatsionnykh antenn, Voronezh, 2007, 248 pp.

[5] E.V. Zakharov, Yu.V. Pimenov, Chislennyi analiz difraktsii radiovoln, Nauka, M., 1986, 184 pp.

[6] A.P. Preobrazhenskiy, “Estimation of possibilities of combined procedure for calculation of scattering cross section of two-dimensional perfectly conductive cavities”, Telecommunications and Radio Engineering, 63:3 (2005), 269–274 | DOI

[7] H. Ling, “RCS of waveguide cavities: a hybrid boundary-integral/modal approach”, IEEE Trans. Antennas Propagat., AP-38:9 (1990), 1413–1420 | DOI

[8] H. Ling, S.W. Lee, R.C. Chou, “High-frequency RCS of open cavities with rectangular and circular cross sections”, IEEE Trans. Antennas Propagat., AP-37:5 (1989), 648–654 | DOI

[9] A. Altintas, P.H. Pathak, M.C. Liang, “A selective modal scheme for the analysis of EM coupling into or radiation from large open-ended waveguides”, IEEE Trans. Antennas Propagat., AP-36:1 (1988), 84–96 | DOI

[10] P.Ya. Ufimtsev, Metod kraevykh voln fizicheskoi teorii difraktsii, Sovetskoe radio, M., 1962, 244 pp.