Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2023_1_a9, author = {Gaopeng Yang and Tiantian Wu and Jinxing Cao and Xiaohong Jiang}, title = {Preparation of {Zn}$^{2+}$-doped {CuS} hollow spheres by one-step synthesis and its photocatalytic performance in visible light}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {60--68}, publisher = {mathdoc}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PFMT_2023_1_a9/} }
TY - JOUR AU - Gaopeng Yang AU - Tiantian Wu AU - Jinxing Cao AU - Xiaohong Jiang TI - Preparation of Zn$^{2+}$-doped CuS hollow spheres by one-step synthesis and its photocatalytic performance in visible light JO - Problemy fiziki, matematiki i tehniki PY - 2023 SP - 60 EP - 68 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2023_1_a9/ LA - en ID - PFMT_2023_1_a9 ER -
%0 Journal Article %A Gaopeng Yang %A Tiantian Wu %A Jinxing Cao %A Xiaohong Jiang %T Preparation of Zn$^{2+}$-doped CuS hollow spheres by one-step synthesis and its photocatalytic performance in visible light %J Problemy fiziki, matematiki i tehniki %D 2023 %P 60-68 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2023_1_a9/ %G en %F PFMT_2023_1_a9
Gaopeng Yang; Tiantian Wu; Jinxing Cao; Xiaohong Jiang. Preparation of Zn$^{2+}$-doped CuS hollow spheres by one-step synthesis and its photocatalytic performance in visible light. Problemy fiziki, matematiki i tehniki, no. 1 (2023), pp. 60-68. http://geodesic.mathdoc.fr/item/PFMT_2023_1_a9/
[1] J. Guo, Y. Liang, L. Liu, J. Hu, H. Wang, W. An, W. Cui, “Core-shell structure of sulphur vacancies-CdS@CuS: Enhanced photocatalytic hydrogen generation activity based on photoinduced interfacial charge transfer”, J. Colloid Interface Sci., 600 (2021), 138–149 | DOI
[2] X.-S. Hu, Y. Shen, Y.-T. Zhang, J.-J. Nie, “Preparation of flower-like CuS/reduced graphene oxide (RGO) photocatalysts for enhanced photocatalytic activity”, Journal of Physics and Chemistry of Solids, 103 (2017), 201–208 | DOI
[3] R. Lv, Y.-Q. Liang, Z.-Y. Li, S.-L. Zhu, Z.-D. Cui, S.-L. Wu, “Flower-like CuS/graphene oxide with photothermal and enhanced photocatalytic effect for rapid bacteria-killing using visible light”, Rare Metals, 41:2 (2021), 639–649
[4] L. Zhao, L. Zhou, C. Sun, Y. Gu, W. Wen, X. Fang, “Rose-like CuS microflowers and their enhanced visible-light photocatalytic performance”, CrystEngComm., 20:41 (2018), 6529–6537 | DOI
[5] S. Han, L. Hu, N. Gao, A.A. Al-Ghamdi, X. Fang, “Efficient Self-Assembly Synthesis of Uniform CdS Spherical Nanoparticles-Au Nanoparticles Hybrids with Enhanced Photoactivity”, Advanced Functional Materials, 24:24 (2014), 3725–3733 | DOI
[6] F. Li, T. Kong, W. Bi, D. Li, Z. Li, X. Huang, “Synthesis and optical properties of CuS nanoplate-based architectures by a solvothermal method”, Applied Surface Science, 255:12 (2009), 6285–6289 | DOI
[7] A. Prakash, M. Dan, S. Yu, S. Wei, Y. Li, F. Wang, Y. Zhou, “In$_2$S$_3$/CuS nanosheet composite: An excellent visible light photocatalyst for H$_2$ production from H$_2$S”, Solar Energy Materials and Solar Cells, 180 (2018), 205–212 | DOI
[8] W. Xu, S. Zhu, Y. Liang, Z. Li, Z. Cui, X. Yang, A. Inoue, “Nanoporous CuS with excellent photocatalytic property”, Sci Rep., 2015, no. 5, 18125
[9] X. Xu, Y. Wang, R. Wang, J. Pan, J. Hu, H. Zeng, “Creating Carbon-Oxygen Bonds over TiO$_2$ Nanofibers for Synergistic Benefits of Visible-Light Response and Charge Separation toward Photocatalysis”, Advanced Materials Interfaces, 4:4 (2017)
[10] R. Zhu, W. Zhang, C. Li, R. Yang, “Uniform Zinc Oxide Nanowire Arrays Grown on Nonepitaxial Surface with General Orientation Control”, Nano Lett., 13:11 (2013), 5171–5176 | DOI
[11] R. Zeinodin, F. Jamali-Sheini, “In-doped CuS nanostructures: Ultrasonic synthesis, physical properties, and enhanced photocatalytic behavior”, Physica B: Condensed Matter, 570 (2019), 148–156 | DOI
[12] U.T.D. Thuy, N.Q. Liem, C.M.A. Parlett, G.M. Lalev, K. Wilson, “Synthesis of CuS and CuS/ZnS core/shell nanocrystals for photocatalytic degradation of dyes under visible light”, Catalysis Communications, 44 (2014), 62–67 | DOI
[13] T. Zhao, X. Peng, X. Zhao, J. Hu, W. Yang, T. Li, I. Ahmad, “Facile preparation and high capacitance performance of copper sulfide microspheres as supercapacitor electrode material”, Composites Part B: Engineering, 163 (2019), 26–35 | DOI
[14] H. Ding, H. Yu, Q. Han, “Transformation of phase and heterojunction type by using HAc-adsorbed Bi(NO$_3$)$_3$ as a Bi source”, J Colloid Interface Sci., 604 (2021), 429–440 | DOI
[15] S. Adhikari, D. Sarkar, G. Madras, “Hierarchical Design of CuS Architectures for Visible Light Photocatalysis of 4-Chlorophenol”, ACS Omega, 2:7 (2017), 4009–4021 | DOI
[16] H. Hu, J. Wang, C. Deng, C. Niu, H. Le, “Microwave-assisted controllable synthesis of hierarchical CuS nanospheres displaying fast and efficient photocatalytic activities”, Journal of Materials Science, 53:20 (2018), 14250–14261 | DOI
[17] Y. Huang, H. Xiao, S. Chen, C. Wang, “Preparation and characterization of CuS hollow spheres”, Ceramics International, 35:2 (2009), 905–907 | DOI
[18] E.L. Simmons, “Reflectance spectroscopy: application of the Kubelka-Munk theory to the rates of photoprocesses of powders”, Applied optics, 15:4 (1976), 951–954 | DOI
[19] L. Tolvaj, K. Mitsui, D. Varga, “Validity limits of Kubelka-Munk theory for DRIFT spectra of photodegraded solid wood”, Wood Science and Technology, 45:1 (2010), 135–146 | DOI
[20] O.L. Evdokimova, M.E. Belousova, A.V. Evdokimova, T.V. Kusova, A.E. Baranchikov, K.S. Antonets, A.A. Nizhnikov, A.V. Agafonov, “Fast and simple approach for production of antibacterial nanocellulose/cuprous oxide hybrid films”, Cellulose, 28:5 (2021), 2931–2945 | DOI
[21] J. Wang, Q. Zhang, F. Deng, X. Luo, D.D. Dionysiou, “Rapid toxicity elimination of organic pollutants by the photocatalysis of environment-friendly and magnetically recoverable step-scheme SnFe$_2$O$_4$/ ZnFe$_2$O$_4$ nano-heterojunctions”, Chemical Engineering Journal, 379 (2020)
[22] J. Zhang, J. Yu, Y. Zhang, Q. Li, J.R. Gong, “Visible Light Photocatalytic H$_2$-Production Activity of CuS/ZnS Porous Nanosheets Based on Photoinduced Interfacial Charge Transfer”, Nano Lett., 11:11 (2011), 4774–4779 | DOI
[23] D. Yang, Z. Wang, J. Chen, “Revealing the role of surface elementary doping in photocatalysis”, Catalysis Science Technology, 12:11 (2022), 3634–3638 | DOI
[24] Q. Han, K. Zhang, J. Zhang, S. Gong, X. Wang, J. Zhu, “Effect of the counter ions on composition and morphology of bismuth oxyhalides and their photocatalytic performance”, Chemical Engineering Journal, 299 (2016), 217–226 | DOI
[25] M. Mousavi, A. Habibi-Yangjeh, M. Abitorabi, “Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation”, J. Colloid Interface Sci., 480 (2016), 218–231 | DOI
[26] X. Ma, B. Lu, D. Li, R. Shi, C. Pan, Y. Zhu, “Origin of Photocatalytic Activation of Silver Orthophosphate from First-Principles”, The Journal of Physical Chemistry C, 115:11 (2011), 4680–4687 | DOI
[27] A.H. Zahid, Q. Han, X. Jia, S. Li, H. Hangjia, H. Liu, “Highly stable 3D multilayered nanoparticles-based $\beta$-Bi$_2$O$_3$ hierarchitecture with enhanced photocatalytic activity”, Optical Materials, 109 (2020) | DOI
[28] N. Tian, H. Huang, C. Liu, F. Dong, T. Zhang, X. Du, S. Yu, Y. Zhang, “In situ co-pyrolysis fabrication of CeO$_2$/gC$_3$N$_4$ n-n type heterojunction for synchronously promoting photo-induced oxidation and reduction properties”, Journal of Materials Chemistry A, 33:3 (2015), 17120–17129 | DOI