Structure and mechanical properties of carbon coatings alloyed with nitrogen and aluminum
Problemy fiziki, matematiki i tehniki, no. 1 (2023), pp. 47-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

Carbon coatings doped with nitrogen and aluminum were deposited from combined flows of pulsed carbon plasma and aluminum ions generated by a DC arc discharge at a nitrogen partial pressure of 6$\cdot$10$^{-2}$ Pa. The regularities of the influence of conditions and modes of deposition on the phase composition of the carbon matrix and the mechanical properties of the coatings are determined. In the deposition mode (6 Hz, 60 A), the coatings are characterized by the smallest size of Csp$^2$ clusters and their high concentration, which determined their maximum microhardness, high plastic and tribological properties.
Keywords: carbon coating, aluminum, nitrogen, mechanical properties, alloying, vacuum pulsed cathode-arc evaporation method.
Mots-clés : structure
@article{PFMT_2023_1_a7,
     author = {D. G. Piliptsou and Bing Zhou and A. V. Rogachev and N. N. Fedosenko and E. A. Kulesh},
     title = {Structure and mechanical properties of carbon coatings alloyed with nitrogen and aluminum},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {47--53},
     publisher = {mathdoc},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2023_1_a7/}
}
TY  - JOUR
AU  - D. G. Piliptsou
AU  - Bing Zhou
AU  - A. V. Rogachev
AU  - N. N. Fedosenko
AU  - E. A. Kulesh
TI  - Structure and mechanical properties of carbon coatings alloyed with nitrogen and aluminum
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2023
SP  - 47
EP  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2023_1_a7/
LA  - ru
ID  - PFMT_2023_1_a7
ER  - 
%0 Journal Article
%A D. G. Piliptsou
%A Bing Zhou
%A A. V. Rogachev
%A N. N. Fedosenko
%A E. A. Kulesh
%T Structure and mechanical properties of carbon coatings alloyed with nitrogen and aluminum
%J Problemy fiziki, matematiki i tehniki
%D 2023
%P 47-53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2023_1_a7/
%G ru
%F PFMT_2023_1_a7
D. G. Piliptsou; Bing Zhou; A. V. Rogachev; N. N. Fedosenko; E. A. Kulesh. Structure and mechanical properties of carbon coatings alloyed with nitrogen and aluminum. Problemy fiziki, matematiki i tehniki, no. 1 (2023), pp. 47-53. http://geodesic.mathdoc.fr/item/PFMT_2023_1_a7/

[1] Y. Lifshitz, “Diamond like carbon - present status”, Diam. Relat. Mater., 8 (1999), 1659–1676 | DOI

[2] J. Vetter, “60 years of DLC coatings: Historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications”, Surf. Coat. Technol., 257 (2014), 213–240 | DOI

[3] D.G. Piliptsov i dr., Kompozitsionnye uglerodnye pokrytiya, osazhdennye iz impulsnoi katodnoi plazmy, ed. A.V. Rogachev, Radiotekhnika, M., 2020, 283 pp.

[4] B. Zhou et al., “Structure and optical properties of Cu-DLC composite films deposited by cathode arc with double-excitation source”, Diam. Relat. Mater., 69 (2016), 191–197 | DOI

[5] X. Jiang et al., “The Structure and Properties of a-C:Ti and a-C:Ti:N Coatings Deposited on a Titanium and Titanium Nitride Sublayer”, Lecture Notes in Mechanical Engineering, 422, 2022, 373–382 | DOI | MR

[6] B. Zhou et al., “Structure and mechanical properties of Ni and Cr binary doped amorphous carbon coatings deposited by magnetron sputtering and pulse cathodic arc”, Thin Solid Films, 701 (2020), 137942 | DOI

[7] S. Zhang, X. Zhang, “Toughness evaluation of hard coatings and thin films”, Thin Solid Films, 520 (2012), 2375–2389 ; S. Zhang et al., “Toughness measurement of thin films: a critical review”, Surface and Coatings Technology, 198 (2005), 74–84 | DOI | DOI

[8] A.C. Ferrari et al., “Stress reduction and bond stability during thermal annealing of tetrahedral amorphous carbon”, J. Appl. Phys., 85 (1999), 7191–7197 | DOI

[9] A.C. Ferrari et al., “Interpretation of Raman spectra of disordered and amorphous carbon”, Phys. Rev. B, 61 (2000), 14095–14107 | DOI

[10] B. Zhou et al., “Synthesis and characterization of Ti and N binary-doped $\alpha$-C films deposited by pulse cathode arc with ionic source assistant”, Surf. Inter. Anal., 50 (2018), 1-10 | DOI

[11] G. Soto et al., “XPS, AES and EELS study of the bonding character in CNx films”, Superf. y Vacio., 15 (2002), 34–39

[12] D. Das et al., “Spectroscopic studies of nitrogenated amorphous carbon films prepared by ion beam sputtering”, J. Appl. Phys., 91 (2002), 4944–4955 | DOI

[13] W.J. Gammon et al., “Experimental comparison of N(1s) X-ray photoelectron spectroscopy binding energies of hard and elastic amorphous carbon nitride films with reference organic compounds”, Carbon, 41 (2003), 1917–1923 | DOI

[14] B. Maruyama, F.S. Ohuchi, L. Rabenberg, “Catalytic carbide formation at aluminium-carbon interfaces”, J. Mater. Sci. Lett., 9 (1990), 864–866 | DOI

[15] A.C. Ferrari et al., “Elastic constants of tetrahedral amorphous carbon films by surface brillouin scattering”, Applied Physics Letters, 75 (1999), 1893–1895 | DOI

[16] J.B. Wu et al., “Characterization of diamond-like carbon coatings prepared by pulsed bias cathodic vacuum arc deposition”, Thin Solid Films, 516 (2007), 243–247 | DOI

[17] C.A. Charitidis, “Nanomechanical and nanotribological properties of carbon-based thin films: a review”, International Journal of Refractory Metals and Hard Materials, 28 (2010), 51–70 | DOI

[18] N. Hansen, “Hall-Petch relation and boundary strengthening”, Scripta Materialia, 51:8 (2004), 801–806 | DOI

[19] Y.A. Huang et al., “A study of microindentation hardness test by mechanism-based strain gradient plasticity”, J. Mater. Res., 15 (2000), 1786–1796 | DOI

[20] A.V. Rogachev, “Tribotekhnicheskie svoistva kompozitsionnykh pokrytii, osazhdaemykh vakuumno-plazmennymi metodami”, Trenie i iznos, 29:3 (2008), 285–592