Solution of relativistic partial equations for scattering $d$-states
Problemy fiziki, matematiki i tehniki, no. 1 (2023), pp. 25-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

Partial Green's functions for d-states are defined in the relativistic configurational representation and expressed in terms of elementary functions. For the Green's functions obtained the asymptotics are found for large values of the coordinate, and their nonrelativistic limit is determined. Four quasipotential partial equations in the relativistic configuration representation for scattering states are solved exactly in cases of “delta-sphere potential” and “superposition of two delta-sphere potentials”. The partial amplitudes and the scattering cross sections are determined.
Keywords: quasipotential approach, relativistic configurational representation, Green’s functions, scattering state, $d$-state, delta function potential.
@article{PFMT_2023_1_a3,
     author = {V. N. Kapshai and A. A. Grishechkina},
     title = {Solution of relativistic partial equations for scattering $d$-states},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {25--30},
     publisher = {mathdoc},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2023_1_a3/}
}
TY  - JOUR
AU  - V. N. Kapshai
AU  - A. A. Grishechkina
TI  - Solution of relativistic partial equations for scattering $d$-states
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2023
SP  - 25
EP  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2023_1_a3/
LA  - ru
ID  - PFMT_2023_1_a3
ER  - 
%0 Journal Article
%A V. N. Kapshai
%A A. A. Grishechkina
%T Solution of relativistic partial equations for scattering $d$-states
%J Problemy fiziki, matematiki i tehniki
%D 2023
%P 25-30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2023_1_a3/
%G ru
%F PFMT_2023_1_a3
V. N. Kapshai; A. A. Grishechkina. Solution of relativistic partial equations for scattering $d$-states. Problemy fiziki, matematiki i tehniki, no. 1 (2023), pp. 25-30. http://geodesic.mathdoc.fr/item/PFMT_2023_1_a3/

[1] V.N. Kapshai, A.A. Grishechkina, “Relyativistskie partsialnye funktsii Grina sostoyanii rasseyaniya, kharakterizuyuschikhsya orbitalnym kvantovym chislom $l = 1$”, Problemy fiziki, matematiki i tekhniki, 2021, no. 3 (48), 7–13

[2] V.N. Kapshai, T.A. Alferova, “Razlozhenie po matrichnym elementam UNP gruppy Lorentsa i integralnye uravneniya dlya relyativistskikh volnovykh funktsii”, Kovariantnye metody v teoreticheskoi fizike, 4, In-t fiziki NAN Belarusi, Minsk, 1997, 88–95

[3] V.N. Kapshai, S.I. Fialka, “Partsialnye kvazipotentsialnye uravneniya v relyativistskom konfiguratsionnom predstavlenii”, Izvestiya VUZov. Fizika, 60:10 (2017), 44–50 | Zbl

[4] G.B. Arfken, H.J. Weber, F.E. Harris, Mathematical methods for physicists, 7th ed., Elsevier, New York, 2013, 1205 pp. | MR | Zbl

[5] A.O. Gelfond, Vychety i ikh prilozheniya, Lenand, M., 2018, 114 pp.

[6] J.R. Taylor, Scattering theory: The Quantum Theory of Nonrelativistic Collisions, Dover Publications, USA, 2006, 512 pp.

[7] V.N. Kapshai, Yu.A. Grishechkin, “Relyativistskaya zadacha o $s$-sostoyaniyakh rasseyaniya dlya superpozitsii dvukh potentsialov «$\delta$-sfera»”, Problemy fiziki, matematiki i tekhniki, 2015, no. 2 (23), 7–12