Solution of relativistic partial equations for scattering $d$-states
Problemy fiziki, matematiki i tehniki, no. 1 (2023), pp. 25-30

Voir la notice de l'article provenant de la source Math-Net.Ru

Partial Green's functions for d-states are defined in the relativistic configurational representation and expressed in terms of elementary functions. For the Green's functions obtained the asymptotics are found for large values of the coordinate, and their nonrelativistic limit is determined. Four quasipotential partial equations in the relativistic configuration representation for scattering states are solved exactly in cases of “delta-sphere potential” and “superposition of two delta-sphere potentials”. The partial amplitudes and the scattering cross sections are determined.
Keywords: quasipotential approach, relativistic configurational representation, Green’s functions, scattering state, $d$-state, delta function potential.
@article{PFMT_2023_1_a3,
     author = {V. N. Kapshai and A. A. Grishechkina},
     title = {Solution of relativistic partial equations for scattering $d$-states},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {25--30},
     publisher = {mathdoc},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2023_1_a3/}
}
TY  - JOUR
AU  - V. N. Kapshai
AU  - A. A. Grishechkina
TI  - Solution of relativistic partial equations for scattering $d$-states
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2023
SP  - 25
EP  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2023_1_a3/
LA  - ru
ID  - PFMT_2023_1_a3
ER  - 
%0 Journal Article
%A V. N. Kapshai
%A A. A. Grishechkina
%T Solution of relativistic partial equations for scattering $d$-states
%J Problemy fiziki, matematiki i tehniki
%D 2023
%P 25-30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2023_1_a3/
%G ru
%F PFMT_2023_1_a3
V. N. Kapshai; A. A. Grishechkina. Solution of relativistic partial equations for scattering $d$-states. Problemy fiziki, matematiki i tehniki, no. 1 (2023), pp. 25-30. http://geodesic.mathdoc.fr/item/PFMT_2023_1_a3/