On $\pi$-supersolvability of finite groups
Problemy fiziki, matematiki i tehniki, no. 1 (2023), pp. 69-74

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $H$ of a group $G$ is called $\mathbb{P}_{\pi}$-subnormal in $G$ if either $H=G$ or from $H$ to $G$ there exists a chain of subgroups, whose every index is either a prime in $\pi$ or a $\pi'$-number ($\pi$ is some set of primes). For a finite $\pi$-closed group with given $\mathbb{P}_{\pi}$-subnormal subgroups, the necessary and sufficient conditions of $\pi$-supersolvability are obtained.
Mots-clés : $\pi$-soluble group
Keywords: $\pi$-supersoluble group, $\mathbb{P}_{\pi}$-subnormal subgroup, normalizers of Sylow subgroups.
@article{PFMT_2023_1_a10,
     author = {T. I. Vasilyeva and A. G. Koranchuk},
     title = {On $\pi$-supersolvability of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {69--74},
     publisher = {mathdoc},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2023_1_a10/}
}
TY  - JOUR
AU  - T. I. Vasilyeva
AU  - A. G. Koranchuk
TI  - On $\pi$-supersolvability of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2023
SP  - 69
EP  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2023_1_a10/
LA  - ru
ID  - PFMT_2023_1_a10
ER  - 
%0 Journal Article
%A T. I. Vasilyeva
%A A. G. Koranchuk
%T On $\pi$-supersolvability of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2023
%P 69-74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2023_1_a10/
%G ru
%F PFMT_2023_1_a10
T. I. Vasilyeva; A. G. Koranchuk. On $\pi$-supersolvability of finite groups. Problemy fiziki, matematiki i tehniki, no. 1 (2023), pp. 69-74. http://geodesic.mathdoc.fr/item/PFMT_2023_1_a10/