On $\pi$-supersolvability of finite groups
Problemy fiziki, matematiki i tehniki, no. 1 (2023), pp. 69-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $H$ of a group $G$ is called $\mathbb{P}_{\pi}$-subnormal in $G$ if either $H=G$ or from $H$ to $G$ there exists a chain of subgroups, whose every index is either a prime in $\pi$ or a $\pi'$-number ($\pi$ is some set of primes). For a finite $\pi$-closed group with given $\mathbb{P}_{\pi}$-subnormal subgroups, the necessary and sufficient conditions of $\pi$-supersolvability are obtained.
Mots-clés : $\pi$-soluble group
Keywords: $\pi$-supersoluble group, $\mathbb{P}_{\pi}$-subnormal subgroup, normalizers of Sylow subgroups.
@article{PFMT_2023_1_a10,
     author = {T. I. Vasilyeva and A. G. Koranchuk},
     title = {On $\pi$-supersolvability of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {69--74},
     publisher = {mathdoc},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2023_1_a10/}
}
TY  - JOUR
AU  - T. I. Vasilyeva
AU  - A. G. Koranchuk
TI  - On $\pi$-supersolvability of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2023
SP  - 69
EP  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2023_1_a10/
LA  - ru
ID  - PFMT_2023_1_a10
ER  - 
%0 Journal Article
%A T. I. Vasilyeva
%A A. G. Koranchuk
%T On $\pi$-supersolvability of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2023
%P 69-74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2023_1_a10/
%G ru
%F PFMT_2023_1_a10
T. I. Vasilyeva; A. G. Koranchuk. On $\pi$-supersolvability of finite groups. Problemy fiziki, matematiki i tehniki, no. 1 (2023), pp. 69-74. http://geodesic.mathdoc.fr/item/PFMT_2023_1_a10/

[1] L.A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp.

[2] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New-York, 1992, 891 pp. | MR

[3] G. Glauberman, “Prime-power factor groups of finite groups II”, Math. Z., 117 (1970), 46–51 | DOI | MR

[4] M. Bianchi, A. Gillio Berta Mauri, P. Hauck, “On finite soluble groups with nilpotent Sylow normalizers”, Arch. Math., 47:3 (1986), 193–197 | DOI | MR | Zbl

[5] A. Ballester-Bolinshe, L.A. Shemetkov, “O normalizatorakh silovskikh podgrupp v konechnykh gruppakh”, Sib. mat. zhurnal, 40:1 (1999), 3–5

[6] V.S. Monakhov, M.V. Selkin, “Normalnye podgruppy konechnykh grupp i formatsii s normalizatornymi usloviyami”, Mat. zametki, 66:6 (1999), 867–870 | DOI | Zbl

[7] A. D'Aniello, C. De Vivo, G. Giordano, “Saturated formations and Sylow normalizers”, Bull. Austral. Math. Soc., 69:1 (2004), 25–33 | DOI | MR | Zbl

[8] L. Kazarin, A. Martinez-Pastor, M.D. Perez-Ramos, “On Sylow normalizers of finite groups”, J. Algebra Appl., 13:3 (2014), 1350116, 20 pp. | DOI | MR | Zbl

[9] T.I. Vasileva, A.G. Koranchuk, “Konechnye gruppy s subnormalnymi koradikalami silovskikh normalizatorov”, Sib. mat. zhurnal, 63:4 (2022), 805–813

[10] V.N. Kniahina, V.S. Monakhov, “On supersolvability of finite groups with $\mathbb{P}$-subnormal subgroups”, Internal. J. of Group Theory, 2:4 (2013), 21–29 | MR | Zbl

[11] A.F. Vasilev, T.I. Vasileva, V.N. Tyutyanov, “O konechnykh gruppakh sverkhrazreshimogo tipa”, Sib. mat. zhurnal, 51:6 (2010), 1270–1281 | Zbl

[12] B. Huppert, Endliche Gruppen, v. I, Springer, Berlin, 1967, 795 pp. | MR | Zbl

[13] A.F. Vasilev, “O konechnykh gruppakh s polusubnormalnymi koradikalami silovskikh normalizatorov”, Problemy fiziki, matematiki i tekhniki, 2022, no. 2 (51), 58–62