Analysis of energy characteristics of the second-harmonic generation in long cylindrical dielectric particles
Problemy fiziki, matematiki i tehniki, no. 4 (2022), pp. 53-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

The explicit forms of the power density, the total radiation power of the second-harmonic generation in a long thin cylindrical layer of a small radius, and the conditions for their maximum are found. The spatial distribution of the generated radiation is examined for special cases of the nonlinear dielectric susceptibility tensor. A numerical maximization of the intensity of the second-harmonic is carried out for the range of the particle base radius from nanometers to micrometers. The distribution of the generated radiation from a linear structure of cylindrical particles is determined. The conditions at which the generated radiation is maximal and the conditions at which there occurs no generation are found.
Keywords: second harmonic generation, cylindrical dielectric particle, second-order nonlinear dielectric susceptibility tensor, optimization, radiation power, directivity pattern, linear structure.
@article{PFMT_2022_4_a9,
     author = {A. I. Talkachov and A. A. Shamyna and V. N. Kapshai},
     title = {Analysis of energy characteristics of the second-harmonic generation in long cylindrical dielectric particles},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {53--63},
     publisher = {mathdoc},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_4_a9/}
}
TY  - JOUR
AU  - A. I. Talkachov
AU  - A. A. Shamyna
AU  - V. N. Kapshai
TI  - Analysis of energy characteristics of the second-harmonic generation in long cylindrical dielectric particles
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 53
EP  - 63
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_4_a9/
LA  - ru
ID  - PFMT_2022_4_a9
ER  - 
%0 Journal Article
%A A. I. Talkachov
%A A. A. Shamyna
%A V. N. Kapshai
%T Analysis of energy characteristics of the second-harmonic generation in long cylindrical dielectric particles
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 53-63
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_4_a9/
%G ru
%F PFMT_2022_4_a9
A. I. Talkachov; A. A. Shamyna; V. N. Kapshai. Analysis of energy characteristics of the second-harmonic generation in long cylindrical dielectric particles. Problemy fiziki, matematiki i tehniki, no. 4 (2022), pp. 53-63. http://geodesic.mathdoc.fr/item/PFMT_2022_4_a9/

[1] Y.R. Shen, “Optical Second Harmonic Generation at Interfaces”, Annu. Rev. Phys. Chem., 40 (1989), 327–350 | DOI

[2] S. Viarbitskaya et al., “Size Dependence of Second-Harmonic Generation at the Surface of Microspheres”, Phys. Rev. A, 81:5 (2010), 053850 | DOI

[3] N. Yang, W.E. Angerer, A.G. Yodh, “Angle-resolved second-harmonic light scattering from colloidal particles”, Phys. Rev. Lett., 87:10 (2001), 103902 | DOI

[4] H. Wang et al., “Second Harmonic Generation from the Surface of Centrosymmetric Particles in Bulk Solution”, Chem. Phys. Lett., 259:1–2 (1996), 15–20 | DOI

[5] E.C.Y. Yan, Y. Liu, K.B. Eisenthal, “New Method for Determination of Surface Potential by Second Harmonic Generation”, J. Phys. Chem. B, 102:33 (1998), 6331–6336 | DOI

[6] G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen”, Annalen der physik, 330:3 (1908), 377–445 | DOI

[7] S. Wunderlich et al., “Molecular Mie Model for Second Harmonic Generation and Sum Frequency Generation”, Phys. Rev. B, 84:23 (2011), 235403 | DOI

[8] A.A. Shamyna, V.N. Kapshai, “Generatsiya vtoroi garmoniki ot tonkogo tsilindricheskogo sloya. I. Analiticheskoe reshenie”, Optika i spektroskopiya, 126:6 (2019), 724–731

[9] S. Roke, M. Bonn, A.V. Petukhov, “Nonlinear optical scattering: The concept of effective susceptibility”, Phys. Rev. B, 70:11 (2004), 115106 | DOI

[10] V.N. Kapshai, E.D. Golovin, A.A. Shamyna, “Generatsiya voln summarnoi chastoty v poverkhnostnom sloe sfericheskoi chastitsy”, Problemy fiziki, matematiki i tekhniki, 2022, no. 3 (52), 22–27

[11] V.N. Kapshai, A.A. Shamyna, “Generatsiya vtoroi garmoniki ot tonkogo tsilindricheskogo sloya. II. Analiz resheniya”, Optika i spektroskopiya, 126:6 (2019), 732–739

[12] A.A. Shamyna, V.N. Kapshai, “Generatsiya vtoroi garmoniki ot tonkogo tsilindricheskogo sloya. III. Usloviya otsutstviya generatsii”, Optika i spektroskopiya, 126:6 (2019), 740–747

[13] A.I. Tolkachev, A.A. Shamyna, V.N. Kapshai, “Generatsiya vtoroi garmoniki - summarnoi chastoty v tonkom sfericheskom sloe. IV. Optimizatsionnyi analiz”, Optika i spektroskopiya, 129:12 (2021), 1568–1582 | DOI

[14] M. Daimon, A. Masumura, “Measurement of the Refractive Index of Distilled Water from the Near-Infrared Region to the Ultraviolet Region”, Applied Optics, 46:18 (2007), 3811–3820 | DOI

[15] I.E. Irodov, Volnovye protsessy. Osnovnye zakony, 7-e izd., BINOM. Laboratoriya znanii, M., 2001, 265 pp.