Optimization of laser processing of diamonds
Problemy fiziki, matematiki i tehniki, no. 4 (2022), pp. 30-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the genetic algorithm MOGA of the ANSYS Workbench program, the parameters of laser cutting of diamonds were optimized. The finite element calculation of temperatures and thermoelastic stresses was performed using the APDL programming language. Using a face-centered version of the central compositional plan of the experiment, a regression model of laser cutting of diamonds was constructed. Cutting speed, laser beam radius, and laser power density were used as variable factors. The maximum temperatures and thermoelastic stresses in the laser treatment zone were used as responses. An assessment of the influence of processing parameters on the maximum temperatures and voltages generated by laser radiation showed that the main factor is the power density of laser radiation. Optimization of laser cutting of diamonds was carried out for two options for setting the problem: according to the criterion of minimum thermoelastic stresses and according to the criteria of minimum thermoelastic stresses and maximum processing speed. The parameters obtained as a result of optimization and the parameters obtained as a result of finite element modeling are compared. The maximum relative error of the results obtained using the MOGA algorithm did not exceed 9% when determining temperatures and 15% when determining thermoelastic stresses. As a result of the simulation, the processing parameters were determined, the use of which will increase the productivity and reliability of laser cutting of diamonds.
Keywords: laser cutting, diamond, ANSYS.
Mots-clés : MOGA
@article{PFMT_2022_4_a5,
     author = {V. A. Emelyanov and E. B. Shershnev and Yu. V. Nikitjuk and S. I. Sokolov and I. Y. Aushev},
     title = {Optimization of laser processing of diamonds},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {30--36},
     publisher = {mathdoc},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_4_a5/}
}
TY  - JOUR
AU  - V. A. Emelyanov
AU  - E. B. Shershnev
AU  - Yu. V. Nikitjuk
AU  - S. I. Sokolov
AU  - I. Y. Aushev
TI  - Optimization of laser processing of diamonds
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 30
EP  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_4_a5/
LA  - ru
ID  - PFMT_2022_4_a5
ER  - 
%0 Journal Article
%A V. A. Emelyanov
%A E. B. Shershnev
%A Yu. V. Nikitjuk
%A S. I. Sokolov
%A I. Y. Aushev
%T Optimization of laser processing of diamonds
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 30-36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_4_a5/
%G ru
%F PFMT_2022_4_a5
V. A. Emelyanov; E. B. Shershnev; Yu. V. Nikitjuk; S. I. Sokolov; I. Y. Aushev. Optimization of laser processing of diamonds. Problemy fiziki, matematiki i tehniki, no. 4 (2022), pp. 30-36. http://geodesic.mathdoc.fr/item/PFMT_2022_4_a5/

[1] A.Yu. Mityagin, A.A. Altukhov, A.B. Mityagina, “Tekhnologiya i oborudovanie dlya obrabotki almaznykh materialov sovremennoi tekhniki”, Tekhnologiya i konstruirovanie v elektronnoi apparature, 2009, no. 1, 53–58

[2] A.I. Shkadov, Fizicheskie osnovy lazernoi obrabotki almazov, v 15 kn., ucheb. posobie dlya VTUZov, v. 3, Fizicheskie osnovy lazernoi obrabotki almazov, ed. A.M. Bocharova, Smolensk, 1997, 288 pp.

[3] G.E. Retyukhin, A.G. Koscheev, I.V. Fain, E.B. Shershnev, “Razmernaya obrabotka yuvelirnykh almazov izlucheniem YAG:ND lazera s modulirovannoi dobrotnostyu”, Vestsi NAN Belarusi. Ser. fiz.-tekh. navuk 2001. - # 1. - S. 73–77, 2001, no. 1, 73–77

[4] S.V. Shalupaev, E.B. Shershnev, Y.V. Nikitjuk, V.V. Sviridova, “Dependence of the diamond laser processing efficiency on crystallographic directions”, Proc. SPIE, 4358 (2001), 329–333 | DOI

[5] E.B. Shershnev, Yu.V. Nikityuk, A.E. Shershnev, “Modelirovanie lazernoi obrabotki kristallov almaza”, Izvestiya Gomelskogo gosudarstvennogo universiteta imeni F. Skoriny, 2011, no. 6 (69), 164–168 | Zbl

[6] E.B. Shershnev, Yu.V. Nikityuk, A.E. Shershnev, S.I. Sokolov, “Osobennosti formirovaniya termouprugikh polei pri lazernoi obrabotke kristallov almaza”, Problemy fiziki, matematiki i tekhniki, 2015, no. 1 (22), 38–40

[7] E.B. Shershnev, Yu.V. Nikityuk, A.E. Shershnev, S.I. Sokolov, “Osobennosti primeneniya lazernogo izlucheniya s dlinami voln 1064 nm, 532 nm i 266 nm dlya obrabotki kristallov almaza”, Problemy fiziki, matematiki i tekhniki, 2017, no. 1 (30), 22–24

[8] V.A. Emelyanov, E.B. Shershnev, A.N. Kupo, S.I. Sokolov, “Izuchenie vliyaniya primesei na protsessy formoobrazovaniya sinteticheskogo almaza v zone termicheskogo vliyaniya lazernogo izlucheniya”, Izvestiya Gomelskogo gosudarstvennogo universiteta imeni F. Skoriny, 2022, no. 3 (132), 117–120 | Zbl

[9] Yu.G. Agalakov, A.V. Bernshtein, “Sokraschenie razmernosti dannykh v zadachakh imitatsionnogo modelirovaniya”, Informatsionnye tekhnologii i vychislitelnye sistemy, 2012, no. 3, 3–17

[10] S. Koziel, L. Leifsson, Surrogate-based modeling and optimization, Springer, New York, 2013 | Zbl

[11] P. Jiang, Q. Zhou, X. Shao, Surrogate model-based engineering design and optimization, Springer, Berlin–Heidelberg, Germany, 2020 | MR

[12] A.P. Morgunov, I.V. Revina, Planirovanie i analiz rezultatov eksperimenta, ucheb. posobie, Minobrnauki Rossii, OmGTU, Izd-vo OmGTU, Omsk, 2014, 343 pp.

[13] Yu.P. Adler, E.V. Markova, Yu.V. Granovskii, Planirovanie eksperimenta pri poiske optimalnykh uslovii, Nauka, M., 1976, 278 pp.

[14] V.P. Bessmeltsev, E.D. Bulushev, “Optimizatsiya rezhimov lazernoi mikroobrabotki”, Avtometriya, 50:6 (2014), 3–21 | Zbl

[15] P. Parandoush, A. Hossain, “A review of modeling and simulation of laser beam machining”, International Journal of Machine Tools and Manufacture, 85 (2014), 135–145 | DOI

[16] Y.V. Nikityuk, A.N. Serdyukov, I.Y. Aushev, “Optimization of two-beam laser cleavage of silicate glass”, J. Opt. Technol., 89 (2022), 121–125 | DOI

[17] Yu.V. Nikityuk i dr., “Optimizatsiya parametrov obrabotki stali 12Kh18N9T kruglymi lazernymi puchkami”, Vestnik GGTU im. P.O. Sukhogo: nauchno-prakticheskii zhurnal, 2022, no. 2, 17–24

[18] Yu.V. Nikityuk, A.N. Serdyukov, I.Yu. Aushev, “Optimizatsiya parametrov lazernogo raskalyvaniya kvartsevogo stekla”, Problemy fiziki, matematiki i tekhniki, 2021, no. 4 (49), 21–28

[19] V.V. Emelyanov, V.V. Kureichik, V.M. Kureichik, Teoriya i praktika evolyutsionnogo modelirovaniya, FIZMATLIT, M., 2003, 432 pp.

[20] S.V. Krasnovskaya, V.V. Naprasnikov, “Obzor vozmozhnostei optimizatsionnykh algoritmov pri modelirovanii konstruktsii kompressorno-kondensatornykh agregatov metodom konechnykh elementov”, Vestsi Natsyyanalnai akademii navuk Belarusi. Seryya fizikatekhnichnykh navuk, 2016, no. 2, 92–98

[21] C. Fonsecay, P. Flemingz, “Genetic algorithms for multiobjective optimization: Formulation discussion and generalization”, Proceedings of The 5th International Conference on Genetic Algorithms, Morgan Kaufmann Publishers Inc., CA, USA, San Francisco, 1993, 416–423

[22] S. Wu, J. Xing, L. Dong, H. Zhu, “Multi-objective optimization of microstructure of gravure cell based on response surface method”, Processes, 9:403 (2021), 1–15

[23] J. Grififths, C. Dowding, “Optimization of process parameters in laser transmission welding for food packaging applications”, Procedia CIRP, 74 (2018), 528–532 | DOI

[24] Ofitsialnyi sait kompanii ANSYS, (Data dostupa: 04.05.2022) https://www.ansys.com

[25] L.D. Kovalenko, Osnovy termouprugosti, Naukova dumka, Kiev, 1970, 307 pp.

[26] G.B. Bokii i dr., Prirodnye i sinteticheskie almazy, Nauka, M., 1986, 221 pp.

[27] N.V. Novikov i dr., Fizicheskie svoistva almaza, 1987, 201 pp.