Energy properties of the vector circular Kummer beams with terminating power. I. The homogeneous polarization
Problemy fiziki, matematiki i tehniki, no. 4 (2022), pp. 16-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

Analytical expressions in the closed shape for the vector circular 3D light Kummer beams with the homogeneous polarisation are offered and explored. These expressions do not contain a Gaussian. At certain restrictions on the free parametres such Kummer beams transfer terminating power. The transverse (spin and orbital) energy fluxes of such beams are calculated and graphically studied. It has been established, that the azimuthal function essentially influences the properties of transverse beam energy fluxes.
Keywords: paraxial beams, vector circular beams, Kummer beams.
@article{PFMT_2022_4_a2,
     author = {S. S. Girgel},
     title = {Energy properties of the vector circular {Kummer} beams with terminating power. {I.} {The} homogeneous polarization},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {16--20},
     publisher = {mathdoc},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_4_a2/}
}
TY  - JOUR
AU  - S. S. Girgel
TI  - Energy properties of the vector circular Kummer beams with terminating power. I. The homogeneous polarization
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 16
EP  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_4_a2/
LA  - ru
ID  - PFMT_2022_4_a2
ER  - 
%0 Journal Article
%A S. S. Girgel
%T Energy properties of the vector circular Kummer beams with terminating power. I. The homogeneous polarization
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 16-20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_4_a2/
%G ru
%F PFMT_2022_4_a2
S. S. Girgel. Energy properties of the vector circular Kummer beams with terminating power. I. The homogeneous polarization. Problemy fiziki, matematiki i tehniki, no. 4 (2022), pp. 16-20. http://geodesic.mathdoc.fr/item/PFMT_2022_4_a2/

[1] Yu.A. Ananev, Opticheskie rezonatory i lazernye puchki, Nauka, M., 1990, 264 pp.

[2] E.G Abramochkin, V.G. Volostnikov, Sovremennaya optika gaussovykh puchkov, FIZMATLIT, M., 2010, 184 pp.

[3] F. Gori, G. Guattari, C. Padovani, “Bessel-Gaussian beams”, Opt. Communs., 64 (1987), 491–495 | DOI

[4] S.S. Girgel, “Puchki Kummera bez gaussovoi apodizatsii s perenosimoi konechnoi moschnostyu”, Problemy, fiziki, matematiki i tekhniki, 2015, no. 3 (24), 7–9

[5] S.S. Girgel, “3D svetovye puchki Kummera bez gaussovoi apodizatsii s perenosimoi konechnoi moschnostyu”, Problemy, fiziki, matematiki i tekhniki, 2022, no. 2 (52), 18–21

[6] S.S. Girgel, “Energeticheskie kharakteristiki vektornykh dekartovykh puchkov Kummera s perenosimoi konechnoi moschnostyu”, Problemy, fiziki, matematiki i tekhniki, 2022, no. 3 (53), 13–17

[7] S.S. Girgel, “Tsirkulyarnye 3D svetovye puchki Kummera - Gaussa s nepreryvnym uglovym spektrom”, Problemy fiziki, matematiki i tekhniki, 2019, no. 1 (38), 16–20

[8] Miguel A. Bandres and Julio C. Gutierrez-Vega, “Circular beams”, Optics Letters, 33:2 (2008), 177–179 | DOI

[9] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979, 830 pp.

[10] E. Yanke, F. Emde, F. Lesh, Spetsialnye funktsii, Nauka, M., 1977, 342 pp.

[11] F.I. Fedorov, Optika anizotropnykh sred, Izd-vo AN BSSR, Minsk, 1976, 380 pp.

[12] M.V. Berry, “Optical currents”, Journal of Optics A: Pure and Applied Optics, 11:9 (2009), 094001 | DOI

[13] A.Y. Bekshaev, M.S. Soskin, “Transverse energy flows in vectorial fields of paraxial beams with singularities”, Optics Communications, 271 (2007), 332–348 | DOI

[14] A. Bekshaev, K. Bliokh, M. Soskin, “Internal flows and energy circulation in light beams”, Journal of Optics, 13:5 (2011), 053001 | DOI