Optimization of parameters of absorbing metamaterials based on $\Pi$-shaped elements
Problemy fiziki, matematiki i tehniki, no. 3 (2022), pp. 56-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of numerical simulation, the values of the parameters of an absorbing structure consisting of conductive $\Pi$-shaped elements which ensure the formation of weakly reflecting structures with simultaneous strong absorption of waves in the microwave range have been determined. Multicriteria optimization of the metamaterial parameters was performed using the MOGA genetic algorithm built into the DesignXplorer module of the ANSYS Workbench program. The period of the structure, the width and thickness of the conductive layer of $\Pi$-shaped elements were used as variable factors. The resonant frequency and the corresponding values of the reflection and absorption coefficients of the metamaterial were used as responses. The ANSYS HFSS program was used to design the absorbing structure and determine the response values. The numerical experiment was carried out using a sample obtained by the Latin hypercube method in the DesignXplorer module of the ANSYS Workbench program. The parameters of the metamaterial obtained as a result of optimization and the parameters obtained as a result of finite element modeling in the ANSYS HFSS program were compared. The maximum relative error of the results obtained using the MOGA algorithm did not exceed $1\%$ when determining the resonant frequencies of the incident radiation, $6\%$ when determining the absorption coefficients of the metamaterial, and $13\%$ when determining the reflection coefficients of the metamaterial.
Keywords: metamaterial, reflection, multi-criteria optimization MOGA, ANSYS.
Mots-clés : absorption
@article{PFMT_2022_3_a8,
     author = {S. A. Khakhomov and A. L. Samofalov and Yu. V. Nikitjuk and I. V. Semchenko and I. Y. Aushev},
     title = {Optimization of parameters of absorbing metamaterials based on $\Pi$-shaped elements},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {56--60},
     publisher = {mathdoc},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_3_a8/}
}
TY  - JOUR
AU  - S. A. Khakhomov
AU  - A. L. Samofalov
AU  - Yu. V. Nikitjuk
AU  - I. V. Semchenko
AU  - I. Y. Aushev
TI  - Optimization of parameters of absorbing metamaterials based on $\Pi$-shaped elements
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 56
EP  - 60
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_3_a8/
LA  - ru
ID  - PFMT_2022_3_a8
ER  - 
%0 Journal Article
%A S. A. Khakhomov
%A A. L. Samofalov
%A Yu. V. Nikitjuk
%A I. V. Semchenko
%A I. Y. Aushev
%T Optimization of parameters of absorbing metamaterials based on $\Pi$-shaped elements
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 56-60
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_3_a8/
%G ru
%F PFMT_2022_3_a8
S. A. Khakhomov; A. L. Samofalov; Yu. V. Nikitjuk; I. V. Semchenko; I. Y. Aushev. Optimization of parameters of absorbing metamaterials based on $\Pi$-shaped elements. Problemy fiziki, matematiki i tehniki, no. 3 (2022), pp. 56-60. http://geodesic.mathdoc.fr/item/PFMT_2022_3_a8/

[1] I.V. Semchenko i dr., “Metamaterialy i metapoverkhnosti”, Nauka i innovatsii, 2020, no. 8, 23–27

[2] I.V. Semchenko et al., “The effective optimal parameters of metamaterial on the base of omega-elements”, Recent Global Research and Education: Technological Challenges, INTER-ACADEMIA 2016, Advances in Intelligent Systems and Computing, 519, eds. Ryszard Jablonski, Roman Szewczyk, Springer, 2017, 3–9 | DOI

[3] I.V. Semchenko et al., “Polarization properties of a rectangular balanced omega-element in the THz range”, Engineering for Sustainable Future, INTER-ACADEMIA 2019, Lecture Notes in Networks and Systems, 101, ed. Várkonyi-Káczy A., Springer, 2020, 84–93 | DOI

[4] I.V. Semchenko et al., “Radiation of circularly polarized microwaves by a plane periodic structure of $\Omega$ elements”, J. Commun. Technol. Electron., 52:9 (2007), 1002 | DOI

[5] V.V. Emelyanov, V.V. Kureichik, V.M. Kureichik, Teoriya i praktika evolyutsionnogo modelirovaniya, FIZMATLIT, M., 2003, 432 pp.

[6] S.V. Krasnovskaya, V.V. Naprasnikov, “Obzor vozmozhnostei optimizatsionnykh algoritmov pri modelirovanii konstruktsii kompressorno-kondensatornykh agregatov metodom konechnykh elementov”, Vestsi Natsyyanalnai akademii navuk Belarusi. Seryya fizikatekhnichnykh navuk, 2016, no. 2, 92–98

[7] C. Fonsecay, P. Flemingz, “Genetic algorithms for multiobjective optimization: Formulation discussion and generalization”, Proceedings of The 5th International Conference on Genetic Algorithms, Morgan Kaufmann Publishers Inc., CA, USA, San Francisco, 1993, 416–423

[8] V.P. Bessmeltsev, E.D. Bulushev, “Optimizatsiya rezhimov lazernoi mikroobrabotki”, Avtometriya, 50:6 (2014), 3–21 | Zbl

[9] G.O. Odu, O.E. Charles-Owaba, “Review of multi-criteria optimization methods theory and applications”, IOSR Journal of Engineering, 3:10 (2013), 1–14 | DOI

[10] S. Wu at al., “Multi-Objective Optimization of Microstructure of Gravure Cell Based on Response Surface Method”, Processes, 9:2 (2021), 1–15

[11] Y.V. Nikityuk, A.N. Serdyukov, I.Y. Aushev, “Optimization of two-beam laser cleavage of silicate glass”, J. Opt. Technol., 89 (2022), 121–125 | DOI

[12] Yu.V. Nikityuk, A.N. Serdyukov, I.Yu. Aushev, “Optimizatsiya parametrov lazernogo raskalyvaniya kvartsevogo stekla”, Problemy fiziki, matematiki i tekhniki, 2021, no. 4 (49), 21–28

[13] Yu.V. Nikityuk i dr., “Optimizatsiya parametrov obrabotki stali 12Kh18N9T kruglymi lazernymi puchkami”, Vestnik Gomelskogo gosudarstvennogo tekhnicheskogo universiteta im. P.O. Sukhogo, 2022, no. 2, 17–24

[14] ANSYS - ofitsialnyi sait kompanii ANSYS, (Data dostupa: 15.05.2022) https://www.ansys.com/

[15] S.E. Bankov, E.M. Guttsait, A.A. Kurushin, Reshenie opticheskikh i SVCh zadach s pomoschyu HFSS, OOO «Orkada», M., 2012, 250 pp.

[16] V.S. Asadchy et al., “Determining polarizability tensors for an arbitrary small electromagnetic scatterer”, Photonics and Nanostructures - Fundamentals and Applications, 12:4 (2014), 298–304 | DOI

[17] T.J. Santner, B.J. Williams, W.I. Notz, The Design and Analysis of Computer Experiments, Springer Series in Statistics, 2003, 285 pp. | DOI | MR | Zbl