Parametric analysis of a cylindrical hyperlens with subwavelength resolution for THz waves
Problemy fiziki, matematiki i tehniki, no. 3 (2022), pp. 48-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using numerical simulation for THz waves, a design has been proposed and a parametric analysis of the geometrical parameters of the cylindrical hyperlens has been carried out. The dependences of image formation from two slits with subwavelength resolution on the number of layers, the thickness of the dielectric and metal layers, the radius and thickness of the hyperlens have been studied. The optimal parameters of the hyperlens for the formation of a high-quality image with subwavelength resolution in the near and far fields have been found.
Mots-clés : hyperlens, THz range.
Keywords: parametrization, numerical simulation
@article{PFMT_2022_3_a7,
     author = {Iv. A. Fanyaev and Ig. A. Fanyaev and S. A. Khakhomov},
     title = {Parametric analysis of a cylindrical hyperlens with subwavelength resolution for {THz} waves},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {48--55},
     publisher = {mathdoc},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_3_a7/}
}
TY  - JOUR
AU  - Iv. A. Fanyaev
AU  - Ig. A. Fanyaev
AU  - S. A. Khakhomov
TI  - Parametric analysis of a cylindrical hyperlens with subwavelength resolution for THz waves
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 48
EP  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_3_a7/
LA  - ru
ID  - PFMT_2022_3_a7
ER  - 
%0 Journal Article
%A Iv. A. Fanyaev
%A Ig. A. Fanyaev
%A S. A. Khakhomov
%T Parametric analysis of a cylindrical hyperlens with subwavelength resolution for THz waves
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 48-55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_3_a7/
%G ru
%F PFMT_2022_3_a7
Iv. A. Fanyaev; Ig. A. Fanyaev; S. A. Khakhomov. Parametric analysis of a cylindrical hyperlens with subwavelength resolution for THz waves. Problemy fiziki, matematiki i tehniki, no. 3 (2022), pp. 48-55. http://geodesic.mathdoc.fr/item/PFMT_2022_3_a7/

[1] D.R. Smith, J.B. Pendry, M.C. Wiltshire, “Metamaterials and negative refractive index”, Science, 305:5685 (2004), 788–792 | DOI

[2] N.I. Zheludev, “The road ahead for metamaterials”, Science, 328:5978 (2010), 582–583 | DOI

[3] C.M. Soukoulis, M. Wegener, “Optical metamaterials - more bulky and less lossy”, Science, 330:6011 (2010), 1633–1634 | DOI

[4] C.L. Cortes, W. Newman, S. Molesky, Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials”, Journal of Optics, 14:6 (2012), 063001 | DOI

[5] A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar, “Hyperbolic metamaterials”, Nature photonics, 7:12 (2013), 948–957 | DOI

[6] V.P. Drachev, V.A. Podolskiy, A.V. Kildishev, “Hyperbolic metamaterials: new physics behind a classical problem”, Optics Express, 21:12 (2013), 15048–15064 | DOI

[7] I.V. Lindell, A. Sihvola, S. Tretyakov, A. Viitanen, Electromagnetic waves in chiral and biisotropic media, Artech House, 1994, 332 pp.

[8] I. Semchenko, S. Khakhomov, M. Podalov, S. Tretyakov, “Radiation of circularly polarized microwaves by a plane periodic structure of $\Omega$ elements”, Journal of Communications Technology and Electronics, 52:9 (2007), 1002–1005 | DOI

[9] Yen T. J. et al., “Terahertz magnetic response from artificial materials”, Science, 303:5663 (2004), 1494–1496 | DOI

[10] S. Zhang et al., “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability”, Physical Review Letters, 94:3 (2005), 037402 | DOI

[11] J.B. Pendry, “Negative refraction makes a perfect lens”, Physical Review Letters, 85 (2000), 3966–3969 | DOI

[12] N. Garcia, M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens”, Physical Review Letters, 88:20 (2002), 207403 | DOI

[13] Z. Jacob, L.V. Alekseyev, E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit”, Optics Express, 14:18 (2006), 8247–8256 | DOI

[14] Z. Liu et al., “Far-field optical hyperlens magnifying subdiffraction-limited objects”, Science, 315:5819 (2007), 1686–1686 | DOI

[15] X. Zhang, Z. Liu, “Superlenses to overcome the diffraction limit”, Nature Materials, 7:6 (2008), 435–441 | DOI

[16] J. Rho et al., “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies”, Nature Communications, 1 (2010), 1–5 | DOI

[17] Y. Wang et al., “Efficient and wide spectrum half-cylindrical hyperlens with symmetrical metallo-dielectric structure”, Appl. Phys. A: Mater. Sci. Process., 107 (2012), 31–34 | DOI

[18] K.V. Baryshnikova i dr., “Metalinzy dlya polucheniya izobrazhenii s subvolnovym razresheniem”, Uspekhi fizicheskikh nauk, 192:4 (2022), 386–412 | DOI

[19] S.C. Howells, L.A. Schlie, “Transient terahertz reflection spectroscopy of undoped InSb from 0.1 to 1.1 THz”, Appl. Phys. Lett., 69 (1996), 550–552 | DOI

[20] V.M. Agranovich, V.E. Kravtsov, “Notes on crystal optics of superlattices”, Solid State Communications, 55 (1985), 85–90 | DOI