The study of the microwave magnetron pulse power supply electrical parameters influence on the microwave discharge plasma generation modes
Problemy fiziki, matematiki i tehniki, no. 3 (2022), pp. 42-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

The influence of the electrical modes of the controlled microwave magnetron pulsed inverter power supply on the conditions of large-volume microwave discharge plasma (about 9000 cm$^3$) generation in a large-sized chamber of a resonatortype microwave plasmatron has been studied. The influence of anode current parameters in the power supply circuit of the microwave magnetron on the microwave discharge optical characteristics has been researched. A comparative analysis of the optical characteristics of the microwave discharge formed in the pulsed and constant generation modes depending on the power output of the microwave magnetron power supply has been carried out. It has been established that a decrease in the duty factor between pulses of anode current and the subsequent transition to a constant mode leads to a disproportionate increase in the energy input into the microwave discharge plasma.
Keywords: microwave discharge, microwave magnetron, continuous operating mode, optical plasma luminescence.
@article{PFMT_2022_3_a6,
     author = {O. I. Tikhon and S. I. Madveika and S. I. Bordusau},
     title = {The study of the microwave magnetron pulse power supply electrical parameters influence on the microwave discharge plasma generation modes},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {42--47},
     publisher = {mathdoc},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_3_a6/}
}
TY  - JOUR
AU  - O. I. Tikhon
AU  - S. I. Madveika
AU  - S. I. Bordusau
TI  - The study of the microwave magnetron pulse power supply electrical parameters influence on the microwave discharge plasma generation modes
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 42
EP  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_3_a6/
LA  - ru
ID  - PFMT_2022_3_a6
ER  - 
%0 Journal Article
%A O. I. Tikhon
%A S. I. Madveika
%A S. I. Bordusau
%T The study of the microwave magnetron pulse power supply electrical parameters influence on the microwave discharge plasma generation modes
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 42-47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_3_a6/
%G ru
%F PFMT_2022_3_a6
O. I. Tikhon; S. I. Madveika; S. I. Bordusau. The study of the microwave magnetron pulse power supply electrical parameters influence on the microwave discharge plasma generation modes. Problemy fiziki, matematiki i tehniki, no. 3 (2022), pp. 42-47. http://geodesic.mathdoc.fr/item/PFMT_2022_3_a6/

[1] S.V. Bordusov, Plazmennye SVCh-tekhnologii v proizvodstve izdelii elektronnoi tekhniki, ed. A.P. Dostanko, Bestprint, Minsk, 2002, 452 pp.

[2] J.F. de la Fuente etc., “Microwave plasma emerging technologies for chemical processes”, Journal of Chemical Technology and Biotechnology, 92:10 (2017), 2495–2505 | DOI

[3] R.K. Yafarov, Fizika SVCh vakuumnoplazmennykh nanotekhnologii, Fizmatlit, M., 2009, 216 pp.

[4] Yu.A. Lebedev, “Microwave discharges at low pressures and peculiarities of the processes in strongly non-uniform plasma”, Plasma Sources Sci. Technol., 24:5 (2015), 39 pp. | DOI

[5] A.N. Didenko, B.V. Zverev, SVCh-energetika, Nauka, M., 2000, 262 pp.

[6] I. Ganachev, H. Sugai, “Advanced large-area microwave plasmas for materials processing”, Surface and Coatings Technology, 174–175 (2003), 15–20 | DOI

[7] E. Okress (red.), SVCh-energetika, v. v 3 t., Primenenie energii sverkhvysokikh chastot v meditsine, nauke i tekhnike, Mir, M., 1971, 247 pp.

[8] S.I. Madveiko, S.V. Bordusov, “Skhemotekhnicheskie osobennosti istochnika pitaniya SVCh-magnetrona nepreryvnogo rezhima generatsii dlya raboty v sostave plazmennogo tekhnologicheskogo oborudovaniya”, Doklady BGUIR, 6:52 (2010), 30–34

[9] J.H. Bowles et al., “A large volume microwave plasma source”, Rev. Sci. Instrum., 67:2 (1996), 455–461 | DOI

[10] L.G. Meiners, D.B. Alford, “Simple low-cost microwave plasma source”, Rev. Sci. Instrum., 57:2 (1986), 164–168 | DOI

[11] K.V. Rogozhin, “Osobennosti raboty magnetrona s invertornym blokom pitaniya v mikrovolnovykh promyshlennykh ustanovkakh”, Elektronika i mikroelektronika SVCh, 1 (2018), 510–514

[12] Panasonic Microwave Ovens with Inverters Technical Manual, (Data dostupa: 07.05.2021) https://www.manualslib.com/manual/764833/Panasonic-Microwave-Ovens-With-Inverters.html

[13] O.I. Tsikhan, S.I. Madveika, S.V. Bordusau, “Study of pulsed and continuous modes of microwave discharge plasma generation on a resonator-type plasmatron”, High Temperature Material Processes, 25:2 (2021), 65–75 | DOI

[14] Large area, low temperature nano crystalline diamond coating technology with microwaves: Linear coaxial antenna approach - an alternative to slotted antennas, Semantic Scholar, (Data dostupa: 08.11.2021) https://www.semanticscholar.org/paper/Large-area

[15] H. Pueschner, Heating with microwaves: fundamentals, components and circuit technique, Philips Technical Library, Eindhoven, the Netherlands, 1966, 320 pp.