Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2022_3_a6, author = {O. I. Tikhon and S. I. Madveika and S. I. Bordusau}, title = {The study of the microwave magnetron pulse power supply electrical parameters influence on the microwave discharge plasma generation modes}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {42--47}, publisher = {mathdoc}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2022_3_a6/} }
TY - JOUR AU - O. I. Tikhon AU - S. I. Madveika AU - S. I. Bordusau TI - The study of the microwave magnetron pulse power supply electrical parameters influence on the microwave discharge plasma generation modes JO - Problemy fiziki, matematiki i tehniki PY - 2022 SP - 42 EP - 47 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2022_3_a6/ LA - ru ID - PFMT_2022_3_a6 ER -
%0 Journal Article %A O. I. Tikhon %A S. I. Madveika %A S. I. Bordusau %T The study of the microwave magnetron pulse power supply electrical parameters influence on the microwave discharge plasma generation modes %J Problemy fiziki, matematiki i tehniki %D 2022 %P 42-47 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2022_3_a6/ %G ru %F PFMT_2022_3_a6
O. I. Tikhon; S. I. Madveika; S. I. Bordusau. The study of the microwave magnetron pulse power supply electrical parameters influence on the microwave discharge plasma generation modes. Problemy fiziki, matematiki i tehniki, no. 3 (2022), pp. 42-47. http://geodesic.mathdoc.fr/item/PFMT_2022_3_a6/
[1] S.V. Bordusov, Plazmennye SVCh-tekhnologii v proizvodstve izdelii elektronnoi tekhniki, ed. A.P. Dostanko, Bestprint, Minsk, 2002, 452 pp.
[2] J.F. de la Fuente etc., “Microwave plasma emerging technologies for chemical processes”, Journal of Chemical Technology and Biotechnology, 92:10 (2017), 2495–2505 | DOI
[3] R.K. Yafarov, Fizika SVCh vakuumnoplazmennykh nanotekhnologii, Fizmatlit, M., 2009, 216 pp.
[4] Yu.A. Lebedev, “Microwave discharges at low pressures and peculiarities of the processes in strongly non-uniform plasma”, Plasma Sources Sci. Technol., 24:5 (2015), 39 pp. | DOI
[5] A.N. Didenko, B.V. Zverev, SVCh-energetika, Nauka, M., 2000, 262 pp.
[6] I. Ganachev, H. Sugai, “Advanced large-area microwave plasmas for materials processing”, Surface and Coatings Technology, 174–175 (2003), 15–20 | DOI
[7] E. Okress (red.), SVCh-energetika, v. v 3 t., Primenenie energii sverkhvysokikh chastot v meditsine, nauke i tekhnike, Mir, M., 1971, 247 pp.
[8] S.I. Madveiko, S.V. Bordusov, “Skhemotekhnicheskie osobennosti istochnika pitaniya SVCh-magnetrona nepreryvnogo rezhima generatsii dlya raboty v sostave plazmennogo tekhnologicheskogo oborudovaniya”, Doklady BGUIR, 6:52 (2010), 30–34
[9] J.H. Bowles et al., “A large volume microwave plasma source”, Rev. Sci. Instrum., 67:2 (1996), 455–461 | DOI
[10] L.G. Meiners, D.B. Alford, “Simple low-cost microwave plasma source”, Rev. Sci. Instrum., 57:2 (1986), 164–168 | DOI
[11] K.V. Rogozhin, “Osobennosti raboty magnetrona s invertornym blokom pitaniya v mikrovolnovykh promyshlennykh ustanovkakh”, Elektronika i mikroelektronika SVCh, 1 (2018), 510–514
[12] Panasonic Microwave Ovens with Inverters Technical Manual, (Data dostupa: 07.05.2021) https://www.manualslib.com/manual/764833/Panasonic-Microwave-Ovens-With-Inverters.html
[13] O.I. Tsikhan, S.I. Madveika, S.V. Bordusau, “Study of pulsed and continuous modes of microwave discharge plasma generation on a resonator-type plasmatron”, High Temperature Material Processes, 25:2 (2021), 65–75 | DOI
[14] Large area, low temperature nano crystalline diamond coating technology with microwaves: Linear coaxial antenna approach - an alternative to slotted antennas, Semantic Scholar, (Data dostupa: 08.11.2021) https://www.semanticscholar.org/paper/Large-area
[15] H. Pueschner, Heating with microwaves: fundamentals, components and circuit technique, Philips Technical Library, Eindhoven, the Netherlands, 1966, 320 pp.