Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2022_3_a5, author = {Yu. V. Nikitjuk and E. B. Shershnev and S. I. Sokolov and I. Y. Aushev}, title = {Determination of the parameters of two-beam laser cleaning of quartz raw materials using artificial neural networks and the finite element method}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {37--41}, publisher = {mathdoc}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2022_3_a5/} }
TY - JOUR AU - Yu. V. Nikitjuk AU - E. B. Shershnev AU - S. I. Sokolov AU - I. Y. Aushev TI - Determination of the parameters of two-beam laser cleaning of quartz raw materials using artificial neural networks and the finite element method JO - Problemy fiziki, matematiki i tehniki PY - 2022 SP - 37 EP - 41 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2022_3_a5/ LA - ru ID - PFMT_2022_3_a5 ER -
%0 Journal Article %A Yu. V. Nikitjuk %A E. B. Shershnev %A S. I. Sokolov %A I. Y. Aushev %T Determination of the parameters of two-beam laser cleaning of quartz raw materials using artificial neural networks and the finite element method %J Problemy fiziki, matematiki i tehniki %D 2022 %P 37-41 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2022_3_a5/ %G ru %F PFMT_2022_3_a5
Yu. V. Nikitjuk; E. B. Shershnev; S. I. Sokolov; I. Y. Aushev. Determination of the parameters of two-beam laser cleaning of quartz raw materials using artificial neural networks and the finite element method. Problemy fiziki, matematiki i tehniki, no. 3 (2022), pp. 37-41. http://geodesic.mathdoc.fr/item/PFMT_2022_3_a5/
[1] V.I. Arbuzov, Osnovy radiatsionnogo opticheskogo materialovedeniya, SPb GU ITMO, SPb, 2008, 284 pp.
[2] V. Bokarev, E. Gornev, “Kontaktnaya litografiya v nanotekhnologii”, Nanoindustriya, 2010, no. 5, 22–25
[3] S. Avakov i dr., “Optiko-mekhanicheskie kompleksy dlya bezdefektnogo izgotovleniya fotoshablonov 0,35 mkm i 90 nm”, Fotonika, 2007, no. 6, 35–39
[4] G.A. Ivanov, V.P. Pervadchuk, Tekhnologiya proizvodstva i svoistva kvartsevykh opticheskikh volokon, Izd-vo Permskogo nats. issled. politekhnicheskogo universiteta, Perm, 2011
[5] E.B. Shershnev, Yu.V. Nikityuk, S.I. Sokolov, Sposob obogascheniya kvartsevoi krupki, pat. 21228 Resp. Belarus, MPK(2006) S 03V 1/00, B 07B 13/04, H 05B 6/00, zayavitel Gomel. gos. un-t. im. F. Skoriny No a20140188, zayavl. 21.03.14, opubl. 30.08.17
[6] E.B. Shershnev, Yu.V. Nikityuk, S.I. Sokolov, Ustanovka dlya obogascheniya zhilnogo kvartsa, pat. 9675 Resp. Belarus, MPK(2006) S 03V 1/00, zayavitel Gomel. gos. un-t. im. F. Skoriny No u20130334, zayavl. 15.04.13, opubl. 30.10.13
[7] Shershnev E. B. i dr., “Modelirovanie dvuluchevoi lazernoi separatsii kvartsevogo syrya”, Izvestiya Gomelskogo gosudarstvennogo universiteta imeni F. Skoriny, 2013, no. 6 (81), 216–220
[8] A.P. Dostanko i dr., Innovatsionnye tekhnologii i oborudovanie submikronnoi elektroniki, ed. A. P. Dostanko, Belaruskaya navuka, Minsk, 2020, 260 pp.
[9] V.A. Emelyanov, E.B. Shershnev, S.I. Sokolov, “Dvuluchevaya lazernaya ochistka kvartsevogo syrya”, Doklady BGUIR, 2021, no. 19 (3), 40–48
[10] V.P. Bessmeltsev, E.D. Bulushev, “Optimizatsiya rezhimov lazernoi mikroobrabotki”, Avtometriya, 50:6 (2014), 3–21 | Zbl
[11] P. Parandoush, A. Hossain, “A review of modeling and simulation of laser beam machining”, International Journal of Machine Tools and Manufacture, 85 (2014), 135–145 | DOI
[12] A.N. Bakhtiyari et al., “A review on applications of artificial intelligence in modeling and optimization of laser beam machining”, Optics Laser Technology, 135 (2021), 1–18
[13] B.F. Yousef et al., “Neural network modeling and analysis of the material removal process during laser machining”, International Journal of Advanced Manufacturing Technology, 22:1–2 (2003), 41–53 | DOI
[14] R. Kant, S.N. Joshi, U.S. Dixit, “An integrated FEM-ANN model for laser bending process with inverse estimation of absorptivity”, Mech. Adv. Mater Mod. Process., 2015, no. 1, 6 pp. | DOI
[15] M.B. Kadri et al., “Comparison of ANN and finite element model for the prediction of thermal stresses in diode laser cutting of float glass”, Optik - Int. J. Light Electron Optics, 126:19 (2015), 1959–1964 | DOI
[16] Yu.V. Nikityuk, A.N. Serdyukov, V.A. Prokhorenko, I.Yu. Aushev, “Primenenie iskusstvennykh neironnykh setei i metoda konechnykh elementov dlya opredeleniya parametrov obrabotki kvartsevykh zolgel stekol ellipticheskimi lazernymi puchkami”, Problemy fiziki, matematiki i tekhniki, 2021, no. 3 (48), 30–36
[17] Y.V. Nikitjuk, A.N. Serdyukov, I.Y. Aushev, “Determination of the parameters of two-beam laser splitting of silicate glasses using regression and neural network models”, Journal of the Belarusian State University. Physics, 2022, no. 1, 35–43 | DOI
[18] Yu.V. Nikityuk i dr., “Primenenie metoda konechnykh elementov i iskusstvennykh neironnykh setei dlya opredeleniya parametrov lazernoi obrabotki stali 12Kh18N9T”, Vestnik GGTU im. P.O. Sukhogo, 2022, no. 1, 48–55
[19] Yu.V. Koritskii, V.V. Pasynkov, B.M. Tareev, Spravochnik po elektrotekhnicheskim materialam, v. 3, Energoatomizdat, L., 1988, 728 pp.
[20] Yu.N. Knipovich, Yu.V. Morachevskii, Analiz mineralnogo syrya, GKhI, L., 1959, 1055 pp.
[21] V.A. Golovko, V.V. Krasnoproshin, Neirosetevye tekhnologii obrabotki dannykh, ucheb. posobie, BGU, Minsk, 2017, 263 pp.
[22] F. Sholle, Glubokoe obuchenie na Python, Piter, SPb., 2018, 400 pp.