Generation of sum-frequency waves in the surface layer of a spherical particle
Problemy fiziki, matematiki i tehniki, no. 3 (2022), pp. 22-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

Within the Wentzel–Kramers–Brillouin approximation, a numerical solution was obtained for the problem of the sum-frequency waves generation in a surface optically nonlinear layer of a dielectric spherical particle placed in a dielectric when it is irradiated with two plane elliptically polarized electromagnetic waves. The dependence of the spatial distribution of the generated radiation on the independent components of the nonlinear dielectric susceptibility tensor of the surface layer and on the particle size is analyzed. The differences and similarities of the results obtained on the basis of the Wentzel–Kramers–Brillouin and Rayleigh–Hans–Debye models are highlighted.
Keywords: sum-frequency generation, Wentzel–Kramers–Brillouin model, Rayleigh–Gans–Debye model, directional patterns.
@article{PFMT_2022_3_a3,
     author = {V. N. Kapshai and E. D. Golovin and A. A. Shamyna},
     title = {Generation of sum-frequency waves in the surface layer of a spherical particle},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {22--27},
     publisher = {mathdoc},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_3_a3/}
}
TY  - JOUR
AU  - V. N. Kapshai
AU  - E. D. Golovin
AU  - A. A. Shamyna
TI  - Generation of sum-frequency waves in the surface layer of a spherical particle
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 22
EP  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_3_a3/
LA  - ru
ID  - PFMT_2022_3_a3
ER  - 
%0 Journal Article
%A V. N. Kapshai
%A E. D. Golovin
%A A. A. Shamyna
%T Generation of sum-frequency waves in the surface layer of a spherical particle
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 22-27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_3_a3/
%G ru
%F PFMT_2022_3_a3
V. N. Kapshai; E. D. Golovin; A. A. Shamyna. Generation of sum-frequency waves in the surface layer of a spherical particle. Problemy fiziki, matematiki i tehniki, no. 3 (2022), pp. 22-27. http://geodesic.mathdoc.fr/item/PFMT_2022_3_a3/

[1] M.L. Strader et al., “Label-free spectroscopic detection of vesicles in water using vibrational sum frequency scattering”, Soft Matter., 7:10 (2011), 4959–4963 | DOI

[2] A.G.F de Beer, S. Roke, “Second harmonic generation from the surface of centrosymmetric particles in bulk solution”, Physical Review B, 75 (2007), 245438 | DOI

[3] S. Viarbitskaya et al., “Size dependence of second-harmonic generation at the surface of microspheres”, Physical Review A, 81:5 (2010), 053850 | DOI

[4] S. Roke, M. Bonn, A.V. Petukhov, “Nonlinear optical scattering: The concept of effective susceptibility”, Physical Review B, 70:11 (2004), 115106 | DOI

[5] S. Wunderlich et al., “Molecular Mie model for second harmonic generation and sum frequency generation”, Physical Review B, 84 (2011), 235403 | DOI

[6] A.A. Shamyna, V.N. Kapshai, “Generatsiya summarnoi chastoty ot tonkogo tsilindricheskogo sloya”, Optika i spektroskopiya, 124:1 (2018), 105–121

[7] A.A. Shamyna, V.N. Kapshai, “Generatsiya summarnoi chastoty ot tonkogo sfericheskogo sloya. I. Analiticheskoe reshenie”, Optika i spektroskopiya, 124:6 (2018), 795–803

[8] V.N. Kapshai, A.A. Shamyna, “Generatsiya summarnoi chastoty ot tonkogo sfericheskogo sloya. II. Analiz resheniya”, Optika i spektroskopiya, 125:1 (2018), 71–78