Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2022_3_a2, author = {A. K. Esman and G. L. Zykov and V. A. Potachits}, title = {Multijunction solar cells based on {GaInN/GaN/GaInP/GaAs/Si/InGaAsP}}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {18--21}, publisher = {mathdoc}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2022_3_a2/} }
TY - JOUR AU - A. K. Esman AU - G. L. Zykov AU - V. A. Potachits TI - Multijunction solar cells based on GaInN/GaN/GaInP/GaAs/Si/InGaAsP JO - Problemy fiziki, matematiki i tehniki PY - 2022 SP - 18 EP - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2022_3_a2/ LA - ru ID - PFMT_2022_3_a2 ER -
A. K. Esman; G. L. Zykov; V. A. Potachits. Multijunction solar cells based on GaInN/GaN/GaInP/GaAs/Si/InGaAsP. Problemy fiziki, matematiki i tehniki, no. 3 (2022), pp. 18-21. http://geodesic.mathdoc.fr/item/PFMT_2022_3_a2/
[1] A.K. Esman, G.L. Zykov, V.A. Potachits, V.K. Kuleshov, “Simulation of photovoltaic thermoelectric battery characteristics”, Energetika. Proceeding of CIS higher education institutions and power engineering associations, 64:3 (2021), 250–258 | DOI
[2] K.S. Cho et al., “Optimal CdS buffer thickness to form highquality CdS / Cu(In,Ga)Se$_2$ junctions in solar cells without plasma damage and shunt paths”, ACS Omega, 5:37 (2020), 23983–23988 | DOI
[3] A.K. Esman, V.A. Potachits, G.L. Zykov, “Povyshenie energoeffektivnosti tonkoplenochnykh solnechnykh elementov na osnove soedineniya CuIn$_{1-x}$Ga$_x$Se$_2$”, Problemy fiziki, matematiki i tekhniki, 2016, no. 1 (26), 30–33
[4] K. Derendorf et al., “Fabrication of GaInP / GaAs // Si solar cells by surface activated direct wafer bonding”, IEEE Journal of Photovoltaics, 3:4 (2013), 1423–1428 | DOI
[5] S. Essig et al., “Wafer-bonded GaInP / GaAs // Si solar cells with 30% efficiency under concentrated sunlight”, IEEE Journal of Photovoltaics, 5:3 (2015), 977–981 | DOI
[6] W. Shockley, H.J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells”, J. Appl. Phys., 32 (1961), 510–519 | DOI
[7] O. Dupre, R. Vaillon, M.A. Green, “A full thermal model for photovoltaic devices”, Solar Energy, 140 (2016), 73–82 | DOI
[8] M. Planck, The Theory of Heat Radiation, Dover Publications, Inc., New York, 1991, 224 pp. | MR
[9] I.N. Bronshtein, K.A. Semendyayev, Handbook of Mathematics, Van Nostrand Reinhold Company, New York, 1985, 1164 pp. | MR
[10] M.A. Green et al., “Solar cell efficiency tables (version 57)”, Progress in Photovoltaics, 29:1 (2021), 3–15 | DOI
[11] A. Barnett et al., “50% efficient solar cell architectures and designs”, IEEE 4th World Conference on PV Energy Conversion, v. 2, 2006, 2560–2564
[12] A. Barnett et al., “Milestones toward 50% efficient solar cell modules”, IEEE 22nd European PV Solar Energy Conference, 2007, 95–100