Peculiarity of reactive magnetron deposition of tantalum oxide films with different methods of gas supply into the chamber
Problemy fiziki, matematiki i tehniki, no. 3 (2022), pp. 97-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

The processes of reactive magnetron sputtering of a Ta target in an Ar/O$_2$ gas mixture have been studied. The dependences of the discharge voltage, deposition rate, electrical and physical characteristics of tantalum oxide films on the method of gases supply and oxygen concentration in the Ar/O$_2$ gas mixture are established. It has been established that the metallic, transition and reactive modes of the sputtering system operation are determined by the change in the rate of film deposition. Regardless of the method of the working gases supply, the initial formation of dielectric tantalum oxide films with low optical absorption is observed in the transition mode of the system operation.
Keywords: thin films, tantalum oxide, reactive magnetron sputtering, deposition rate, dielectric properties.
@article{PFMT_2022_3_a16,
     author = {H. T. Doan and D. A. Golosov and V. A. Burdovitsin and S. M. Zavadski and S. N. Melnikov},
     title = {Peculiarity of reactive magnetron deposition of tantalum oxide films with different methods of gas supply into the chamber},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {97--104},
     publisher = {mathdoc},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_3_a16/}
}
TY  - JOUR
AU  - H. T. Doan
AU  - D. A. Golosov
AU  - V. A. Burdovitsin
AU  - S. M. Zavadski
AU  - S. N. Melnikov
TI  - Peculiarity of reactive magnetron deposition of tantalum oxide films with different methods of gas supply into the chamber
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 97
EP  - 104
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_3_a16/
LA  - ru
ID  - PFMT_2022_3_a16
ER  - 
%0 Journal Article
%A H. T. Doan
%A D. A. Golosov
%A V. A. Burdovitsin
%A S. M. Zavadski
%A S. N. Melnikov
%T Peculiarity of reactive magnetron deposition of tantalum oxide films with different methods of gas supply into the chamber
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 97-104
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_3_a16/
%G ru
%F PFMT_2022_3_a16
H. T. Doan; D. A. Golosov; V. A. Burdovitsin; S. M. Zavadski; S. N. Melnikov. Peculiarity of reactive magnetron deposition of tantalum oxide films with different methods of gas supply into the chamber. Problemy fiziki, matematiki i tehniki, no. 3 (2022), pp. 97-104. http://geodesic.mathdoc.fr/item/PFMT_2022_3_a16/

[1] P.A. Cox, Transtition metal oxides: An introduction to their electronic structure and properties, Oxford university press, 2010, 294 pp.

[2] C. Chaneliere et al., “Tantalum pentoxide (Ta$_2$O$_5$) thin films for advanced dielectric applications”, Materials Science and Engineering: R: Reports, 22:6 (1998), 269–322 | DOI

[3] Fang-Xing Jian, S.K. Kurinec, “Tantalum oxide thin films for microelectronic applications”, Proceedings of the Eleventh Biennial University, Government / Industry Microelectronics Symposium (1995), 101–104

[4] C. Christensen, R. de Reus, S. Bouwstra, “Tantalum oxide thin films as protective coatings for sensors”, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems, 1999, 267–272 (Cat. No. 99CH36291)

[5] V. Macagno, J.W. Schultze, “The growth and properties of thin oxide layers on tantalum electrodes”, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 180:1–2 (1984), 157–170 | DOI

[6] G.M. Wolten, A.B. Chase, “Single-crystal data for $\beta$ Ta$_2$O$_5$ and $A$ KPO$_3$”, Zeitschrift für Kristallographie, 129:5–6 (1969), 365–368 | DOI

[7] I.P. Zibrov et al., “Structures and phase transitions of B-Ta$_2$O$_5$ and Z-Ta$_2$O$_5$: two high-pressure forms of Ta$_2$O$_5$”, Acta Crystallographica Section B, 56:4 (2000), 659–665 | DOI

[8] O.L.G. Alderman et al., “Amorphous tantala and its relationship with the molten state”, Physical Review Materials, 2:4 (2018), 043602 | DOI

[9] J. Robertson, R.M. Wallace, “High-K materials and metal gates for CMOS applications”, Materials Science and Engineering R, 88 (2015), 1–41 | DOI

[10] S. Hall et al., “Review and perspective of high-k dielectrics on silicon”, J. of Telecomunications and Information Technology, 2 (2007), 33–43

[11] S. Duenas et al., “Use of anodic tantalum pentoxide for highdensity capacitor fabrication”, Journal of Materials Science: Materials in Electronics, 10:5–6 (1999), 379–384 | DOI

[12] K. Schmitt et al., “Evanescent field sensors based on tantalum pentoxide waveguides - A Review”, Sensors, 8 (2008), 711–738 | DOI

[13] D. Cristea et al., “Tantalum oxynitride thin films: assessment of the photocatalytic efficiency and antimicrobial capacity”, Nanomaterials, 9 (2019), 476 | DOI

[14] E.V. Berlin, L.A. Seidman, Poluchenie tonkikh plenok reaktivnym magnetronnym raspyleniem, Tekhnosfera, M., 2014, 255 pp.

[15] S. Kadlec, J. Musil, H. Vyskocil, “Hysteresis effect in reactive sputtering: a problem of system stability”, J. Phys. D, 19:9 (1986), L187–L190 | DOI

[16] W.D. Sproul, D.J. Christie, D.C. Carter, “Control of reactive sputtering processes”, Thin Solid Films, 491 (2005), 1–17 | DOI

[17] A.P. Burmakov, V.N. Kuleshov, “Magnetronnoe osazhdenie plenok oksida tantala s elektretnym zaryadom”, 8-ya mezhdunarodnaya konferentsiya «Vzaimodeistvie izluchenii s tverdym telom» (23–25 sentyabrya 2009 g., Minsk, Belarus), 302–304

[18] A.P. Dostanko i dr., “Formirovanie plenok nitrida titana metodom reaktivnogo magnetronnogo raspyleniya pri ponizhennom davlenii”, Problemy fiziki, matematiki i tekhniki, 2016, no. 2 (27), 12–17

[19] N. Vilya i dr., “Formirovanie plenok oksida tantala na podlozhkakh diametrom 200 millimetrov”, Problemy fiziki, matematiki i tekhniki, 2020, no. 1 (42), 12–17

[20] Norihiro Ito et al., “Effects of energetic ion bombardment on structural and electrical properties of Al-doped ZnO films deposited by RF-superimposed DC magnetron sputtering”, Jap. J. Appl. Phys., 49 (2010), 071103 | DOI