Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2022_3_a10, author = {A. I. Basik and E. V. Gricuk and T. V. Kapaitsava}, title = {On the question of regularizability of the oblique derivative type boundary value problem for second-oder elliptic systems on the plane}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {67--71}, publisher = {mathdoc}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2022_3_a10/} }
TY - JOUR AU - A. I. Basik AU - E. V. Gricuk AU - T. V. Kapaitsava TI - On the question of regularizability of the oblique derivative type boundary value problem for second-oder elliptic systems on the plane JO - Problemy fiziki, matematiki i tehniki PY - 2022 SP - 67 EP - 71 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2022_3_a10/ LA - ru ID - PFMT_2022_3_a10 ER -
%0 Journal Article %A A. I. Basik %A E. V. Gricuk %A T. V. Kapaitsava %T On the question of regularizability of the oblique derivative type boundary value problem for second-oder elliptic systems on the plane %J Problemy fiziki, matematiki i tehniki %D 2022 %P 67-71 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2022_3_a10/ %G ru %F PFMT_2022_3_a10
A. I. Basik; E. V. Gricuk; T. V. Kapaitsava. On the question of regularizability of the oblique derivative type boundary value problem for second-oder elliptic systems on the plane. Problemy fiziki, matematiki i tehniki, no. 3 (2022), pp. 67-71. http://geodesic.mathdoc.fr/item/PFMT_2022_3_a10/
[1] B.V. Boyarskii, “O pervoi kraevoi zadache dlya sistem uravnenii ellipticheskogo tipa vtorogo poryadka na ploskosti”, Bull. del-Acad. Pol. des Sciences. Ser. des Sciences Math., Astron. et Phys., 7:9 (1959), 565–570 | MR | Zbl
[2] M.I. Zhadan, A.T. Uss, “Zadacha tipa naklonnoi proizvodnoi dlya ellipticheskikh sistem vtorogo poryadka”, Doklady AN BSSR, XXVII:6 (1983), 489–491
[3] M.I. Zhadan, Gomotopicheskaya klassifikatsiya i regulyarizuemost nekotorykh klassov ellipticheskikh sistem i kraevykh zadach, dis. ... kand. fiz.-mat. nauk: 01.01.02, Institut matematiki AN BSSR, Minsk, 1983, 111 pp.
[4] I.M. Gelfand, “Ob ellipticheskikh uravneniyakh”, Uspekhi matematicheskikh nauk, 15:3 (1960), 121–132 | Zbl
[5] A.T. Uss, “Kraevaya zadacha Rimana - Gilberta dlya trekhmernykh analogov sistemy Koshi - Rimana”, Dokl. NAN Belarusi, 47:6 (2003), 10–15 | Zbl
[6] A.I. Basik, E.V. Gritsuk, “Gomotopicheskaya klassifikatsiya regulyarizuemykh kraevykh zadach Rimana - Gilberta dlya odnogo klassa ellipticheskikh sistem v $\mathbb{R}^3$”, Zbirnik statei. Matematika. Informatsiini tekhnologiï, 6, Osvita, Lutsk, 2019, 12–18
[7] A.I. Basik, E.V. Gritsuk, T.A. Gritsuk, “Zadacha Rimana - Gilberta dlya ellipticheskikh sistem ortogonalnogo tipa v $\mathbb{R}^3$”, Ves. Nats. akad. navuk Belarusi. Ser. fiz.-mat. navuk, 56:1 (2020), 7–16 | DOI
[8] A.I. Basik, A.T. Uss, “O kraevykh zadachakh dlya sistem Yanushauskasa”, Tr. In-ta matematiki NAN Belarusi, 10 (2002), 26–28
[9] A.I. Basik, A.T. Uss, “O kraevykh zadachakh dlya ellipticheskikh psevdosimmetricheskikh sistem pervogo poryadka v $\mathbb{R}^4$”, Differents. uravneniya, 38:3 (2003), 410–412
[10] L. Khermander, Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965, 379 pp.
[11] M.S. Agranovich, “Ellipticheskie singulyarnye integro-differentsialnye operatory”, Uspekhi matematicheskikh nauk, 20:5 (1965), 3–120 | DOI | Zbl