On the question of regularizability of the oblique derivative type boundary value problem for second-oder elliptic systems on the plane
Problemy fiziki, matematiki i tehniki, no. 3 (2022), pp. 67-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

The set $\mathfrak{M}(2;2;2)$ of elliptic systems of two second-order partial differential equations on the plane with positive characteristic determinant is considered. An oblique derivative type boundary value problem for a system from $\mathfrak{M}(2;2;2)$ in a bounded domain $\Omega$ with a smooth boundary $\partial\Omega$ is to find a solution for given boundary values of the derivatives along the directions $l_1$ and $l_2$ nontangential to $\partial\Omega$. It is known that the set $\mathfrak{M}(2;2;2)$ has three homotopy connected components. It is also known that if a system from $\mathfrak{M}(2;2;2)$ is a system of orthogonal type and $l_1$, $l_2$ are vector fields that are noncollinear at each point of the boundary, then the oblique derivative boundary value problem is Fredholm in its classical formulation (regardless of the homotopy class of the system). In this paper, for each component of $\mathfrak{M}(2;2;2)$ a representative is given that has the following properties: each component of an arbitrary twice continuously differentiable solution is a biharmonic function, and an oblique derivative type boundary value problem for this representative is not regularizable. Consequently, the regularizability of a problem of oblique derivative type boundary value problem for the elliptic systems under consideration is not related to the homotopy class of the system.
Keywords: elliptic system, regularizable boundary value problem, Lopatinski condition, homotopic classification.
@article{PFMT_2022_3_a10,
     author = {A. I. Basik and E. V. Gricuk and T. V. Kapaitsava},
     title = {On the question of regularizability of the oblique derivative type boundary value problem for second-oder elliptic systems on the plane},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {67--71},
     publisher = {mathdoc},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_3_a10/}
}
TY  - JOUR
AU  - A. I. Basik
AU  - E. V. Gricuk
AU  - T. V. Kapaitsava
TI  - On the question of regularizability of the oblique derivative type boundary value problem for second-oder elliptic systems on the plane
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 67
EP  - 71
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_3_a10/
LA  - ru
ID  - PFMT_2022_3_a10
ER  - 
%0 Journal Article
%A A. I. Basik
%A E. V. Gricuk
%A T. V. Kapaitsava
%T On the question of regularizability of the oblique derivative type boundary value problem for second-oder elliptic systems on the plane
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 67-71
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_3_a10/
%G ru
%F PFMT_2022_3_a10
A. I. Basik; E. V. Gricuk; T. V. Kapaitsava. On the question of regularizability of the oblique derivative type boundary value problem for second-oder elliptic systems on the plane. Problemy fiziki, matematiki i tehniki, no. 3 (2022), pp. 67-71. http://geodesic.mathdoc.fr/item/PFMT_2022_3_a10/

[1] B.V. Boyarskii, “O pervoi kraevoi zadache dlya sistem uravnenii ellipticheskogo tipa vtorogo poryadka na ploskosti”, Bull. del-Acad. Pol. des Sciences. Ser. des Sciences Math., Astron. et Phys., 7:9 (1959), 565–570 | MR | Zbl

[2] M.I. Zhadan, A.T. Uss, “Zadacha tipa naklonnoi proizvodnoi dlya ellipticheskikh sistem vtorogo poryadka”, Doklady AN BSSR, XXVII:6 (1983), 489–491

[3] M.I. Zhadan, Gomotopicheskaya klassifikatsiya i regulyarizuemost nekotorykh klassov ellipticheskikh sistem i kraevykh zadach, dis. ... kand. fiz.-mat. nauk: 01.01.02, Institut matematiki AN BSSR, Minsk, 1983, 111 pp.

[4] I.M. Gelfand, “Ob ellipticheskikh uravneniyakh”, Uspekhi matematicheskikh nauk, 15:3 (1960), 121–132 | Zbl

[5] A.T. Uss, “Kraevaya zadacha Rimana - Gilberta dlya trekhmernykh analogov sistemy Koshi - Rimana”, Dokl. NAN Belarusi, 47:6 (2003), 10–15 | Zbl

[6] A.I. Basik, E.V. Gritsuk, “Gomotopicheskaya klassifikatsiya regulyarizuemykh kraevykh zadach Rimana - Gilberta dlya odnogo klassa ellipticheskikh sistem v $\mathbb{R}^3$”, Zbirnik statei. Matematika. Informatsiini tekhnologiï, 6, Osvita, Lutsk, 2019, 12–18

[7] A.I. Basik, E.V. Gritsuk, T.A. Gritsuk, “Zadacha Rimana - Gilberta dlya ellipticheskikh sistem ortogonalnogo tipa v $\mathbb{R}^3$”, Ves. Nats. akad. navuk Belarusi. Ser. fiz.-mat. navuk, 56:1 (2020), 7–16 | DOI

[8] A.I. Basik, A.T. Uss, “O kraevykh zadachakh dlya sistem Yanushauskasa”, Tr. In-ta matematiki NAN Belarusi, 10 (2002), 26–28

[9] A.I. Basik, A.T. Uss, “O kraevykh zadachakh dlya ellipticheskikh psevdosimmetricheskikh sistem pervogo poryadka v $\mathbb{R}^4$”, Differents. uravneniya, 38:3 (2003), 410–412

[10] L. Khermander, Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965, 379 pp.

[11] M.S. Agranovich, “Ellipticheskie singulyarnye integro-differentsialnye operatory”, Uspekhi matematicheskikh nauk, 20:5 (1965), 3–120 | DOI | Zbl