Approximate analytical solution of the Logunov--Tavkhelidze equation with a linear potential in the relativistic configurational representation
Problemy fiziki, matematiki i tehniki, no. 2 (2022), pp. 22-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

The approximate analytical solutions of the Logunov–Tavkhelidze equation in integral form with a linear potential in the relativistic configurational representation are found. The obtained wave functions are expressed in terms of the Macdonald function while the energy quantization condition is a transcendental equation.
Mots-clés : Logunov–Tavkhelidze equation, Laplace transformation
Keywords: relativistic configurational representation, linear potential, approximate analytical solution, Macdonald function, energy quantization condition.
@article{PFMT_2022_2_a3,
     author = {Yu. A. Grishechkin and V. N. Kapshai},
     title = {Approximate analytical solution of the {Logunov--Tavkhelidze} equation with a linear potential in the relativistic configurational representation},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {22--25},
     publisher = {mathdoc},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_2_a3/}
}
TY  - JOUR
AU  - Yu. A. Grishechkin
AU  - V. N. Kapshai
TI  - Approximate analytical solution of the Logunov--Tavkhelidze equation with a linear potential in the relativistic configurational representation
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 22
EP  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_2_a3/
LA  - ru
ID  - PFMT_2022_2_a3
ER  - 
%0 Journal Article
%A Yu. A. Grishechkin
%A V. N. Kapshai
%T Approximate analytical solution of the Logunov--Tavkhelidze equation with a linear potential in the relativistic configurational representation
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 22-25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_2_a3/
%G ru
%F PFMT_2022_2_a3
Yu. A. Grishechkin; V. N. Kapshai. Approximate analytical solution of the Logunov--Tavkhelidze equation with a linear potential in the relativistic configurational representation. Problemy fiziki, matematiki i tehniki, no. 2 (2022), pp. 22-25. http://geodesic.mathdoc.fr/item/PFMT_2022_2_a3/

[1] V.N. Kapshai, T.A. Alferova, “Relativistic two-particle onedimensional scattering problem for superposition of $\delta$-potentials”, J. Phys. A, 32 (1999), 5329–5342 | DOI | MR | Zbl

[2] V.N. Kapshai, T.A. Alferova, “One-dimensional relativistic problems on bound states and scattering for a superposition of two $\delta$-potentials”, Russian Physics Journal, 45 (2002), 1–9 | DOI

[3] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i tablitsami, Nauka, M., 1979, 830 pp. | MR

[4] L.D. Landau, E.M. Lifshits, Teoreticheskaya fizika, v 10 t., v. 3, Kvantovaya mekhanika: nerelyativistskaya teoriya, 5-e izd., Fizmatlit, M., 2002, 808 pp. | MR

[5] V. Kapshai, K. Shilyaeva, N. Elander, “Integral equations for different wave functions and their use for resonance finding”, J. Phys. B, 42:4 (2009), 044001 | DOI

[6] V.N. Kapshai, K.P. Shilyaeva, “Opredelenie vliyaniya rezonansov na sechenie rasseyaniya na osnove integralnogo uravneniya Fredgolma”, Problemy fiziki, matematiki i tekhniki, 2010, no. 4 (5), 10–17

[7] V.N. Kapshai, K.P. Shilyaeva, Yu.A. Grishechkin, “Rezonansnye sostoyaniya sostavnykh sistem i kovariantnye dvukhchastichnye uravneniya teorii polya”, Kovariantnye metody v teoreticheskoi fizike. Fizika elementarnykh chastits i teoriya otnositelnosti, Sbornik nauchnykh trudov, In-t fiziki NAN Belarusi, Minsk, 2011, 79–88

[8] Yu.A. Grishechkin, M.S. Danilchenko, V.N. Kapshai, “Metod kompleksnogo povorota dlya dvukhchastichnykh uravnenii v impulsnom predstavlenii i rezonansnye sostoyaniya”, Problemy fiziki, matematiki i tekhniki, 2014, no. 3 (20), 21–25

[9] N.N. Kalitkin, Chislennye metody, BKhV-Peterburg, Sankt-Peterburg, 2011, 592 pp.