Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2022_2_a3, author = {Yu. A. Grishechkin and V. N. Kapshai}, title = {Approximate analytical solution of the {Logunov--Tavkhelidze} equation with a linear potential in the relativistic configurational representation}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {22--25}, publisher = {mathdoc}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2022_2_a3/} }
TY - JOUR AU - Yu. A. Grishechkin AU - V. N. Kapshai TI - Approximate analytical solution of the Logunov--Tavkhelidze equation with a linear potential in the relativistic configurational representation JO - Problemy fiziki, matematiki i tehniki PY - 2022 SP - 22 EP - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2022_2_a3/ LA - ru ID - PFMT_2022_2_a3 ER -
%0 Journal Article %A Yu. A. Grishechkin %A V. N. Kapshai %T Approximate analytical solution of the Logunov--Tavkhelidze equation with a linear potential in the relativistic configurational representation %J Problemy fiziki, matematiki i tehniki %D 2022 %P 22-25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2022_2_a3/ %G ru %F PFMT_2022_2_a3
Yu. A. Grishechkin; V. N. Kapshai. Approximate analytical solution of the Logunov--Tavkhelidze equation with a linear potential in the relativistic configurational representation. Problemy fiziki, matematiki i tehniki, no. 2 (2022), pp. 22-25. http://geodesic.mathdoc.fr/item/PFMT_2022_2_a3/
[1] V.N. Kapshai, T.A. Alferova, “Relativistic two-particle onedimensional scattering problem for superposition of $\delta$-potentials”, J. Phys. A, 32 (1999), 5329–5342 | DOI | MR | Zbl
[2] V.N. Kapshai, T.A. Alferova, “One-dimensional relativistic problems on bound states and scattering for a superposition of two $\delta$-potentials”, Russian Physics Journal, 45 (2002), 1–9 | DOI
[3] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i tablitsami, Nauka, M., 1979, 830 pp. | MR
[4] L.D. Landau, E.M. Lifshits, Teoreticheskaya fizika, v 10 t., v. 3, Kvantovaya mekhanika: nerelyativistskaya teoriya, 5-e izd., Fizmatlit, M., 2002, 808 pp. | MR
[5] V. Kapshai, K. Shilyaeva, N. Elander, “Integral equations for different wave functions and their use for resonance finding”, J. Phys. B, 42:4 (2009), 044001 | DOI
[6] V.N. Kapshai, K.P. Shilyaeva, “Opredelenie vliyaniya rezonansov na sechenie rasseyaniya na osnove integralnogo uravneniya Fredgolma”, Problemy fiziki, matematiki i tekhniki, 2010, no. 4 (5), 10–17
[7] V.N. Kapshai, K.P. Shilyaeva, Yu.A. Grishechkin, “Rezonansnye sostoyaniya sostavnykh sistem i kovariantnye dvukhchastichnye uravneniya teorii polya”, Kovariantnye metody v teoreticheskoi fizike. Fizika elementarnykh chastits i teoriya otnositelnosti, Sbornik nauchnykh trudov, In-t fiziki NAN Belarusi, Minsk, 2011, 79–88
[8] Yu.A. Grishechkin, M.S. Danilchenko, V.N. Kapshai, “Metod kompleksnogo povorota dlya dvukhchastichnykh uravnenii v impulsnom predstavlenii i rezonansnye sostoyaniya”, Problemy fiziki, matematiki i tekhniki, 2014, no. 3 (20), 21–25
[9] N.N. Kalitkin, Chislennye metody, BKhV-Peterburg, Sankt-Peterburg, 2011, 592 pp.