Kummer 3D light beams without the Gaussian apodization with transferable terminating power
Problemy fiziki, matematiki i tehniki, no. 2 (2022), pp. 18-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

The analytical expressions for Kummer circular 3D light beams without the Gaussian apodization with the continuous complex coefficient $v$ are obtained. The restrictions on possible values of the free parametres of such beams provided that they possess transferred power, have been discovered and physically realised. The pictorial modelling of such Kummer 3D beams has confirmed, that, indeed, there are certain continuous values of the free complex parametre $v$ for which Kummer beams transfer terminating power.
Keywords: paraxial beams, circular beams, Kummer beams.
@article{PFMT_2022_2_a2,
     author = {S. S. Girgel},
     title = {Kummer {3D} light beams without the {Gaussian} apodization with transferable terminating power},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {18--21},
     publisher = {mathdoc},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_2_a2/}
}
TY  - JOUR
AU  - S. S. Girgel
TI  - Kummer 3D light beams without the Gaussian apodization with transferable terminating power
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 18
EP  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_2_a2/
LA  - ru
ID  - PFMT_2022_2_a2
ER  - 
%0 Journal Article
%A S. S. Girgel
%T Kummer 3D light beams without the Gaussian apodization with transferable terminating power
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 18-21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_2_a2/
%G ru
%F PFMT_2022_2_a2
S. S. Girgel. Kummer 3D light beams without the Gaussian apodization with transferable terminating power. Problemy fiziki, matematiki i tehniki, no. 2 (2022), pp. 18-21. http://geodesic.mathdoc.fr/item/PFMT_2022_2_a2/

[1] Yu.A. Ananev, Opticheskie rezonatory i lazernye puchki, Nauka, M., 1990, 264 pp.

[2] E.G Abramochkin, V.G. Volostnikov, Sovremennaya optika gaussovykh puchkov, FIZMATLIT, M., 2010, 184 pp.

[3] S.S. Girgel, “Puchki Kummera bez gaussovoi apodizatsii s perenosimoi konechnoi moschnostyu”, Problemy, fiziki, matematiki i tekhniki, 2015, no. 3 (24), 7–9

[4] M.A. Bandres, J.C. Gutierres-Vega, “Vector Helmholtz - Gauss and vector Laplace - Gauss beams”, Optics Letters, 30:16 (2005), 2155–2157 | DOI | MR

[5] F. Gori, G. Guattari, C. Padovani, “Bessel-Gaussian beams”, Opt. Communs., 64 (1987), 491–495 | DOI

[6] S.S. Girgel, “Fizicheskie svoistva skalyarnykh 2D puchkov Kummera-Gaussa”, Problemy fiziki, matematiki i tekhniki, 2011, no. 4 (9), 19–23

[7] M.A. Bandres, J.C. Gutierrez-Vega, “Circular beams”, Optics Letters, 33:2 (2008), 177–179 | DOI

[8] S.S. Girgel, “Tsirkulyarnye 3D svetovye puchki Kummera-Gaussa s nepreryvnym uglovym spektrom”, Problemy fiziki, matematiki i tekhniki, 2019, no. 1 (38), 16–20

[9] Z. Flyugge, Zadachi po kvantovoi mekhanike, v. 2, Mir, M., 1974, 418 pp.

[10] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979, 830 pp. | MR

[11] E. Yanke, F. Emde, F. Lesh, Spetsialnye funktsii, Nauka, M., 1977, 342 pp.

[12] E. Zauderer, “Complex argument HermiteGaussian and Laguerre-Gaussian beams”, JOSA A, 3:4 (1986), 465–469 | DOI