On polyorthogonal functions of the first type
Problemy fiziki, matematiki i tehniki, no. 2 (2022), pp. 94-98

Voir la notice de l'article provenant de la source Math-Net.Ru

In pre-Hilbert function spaces generated by the measures $\mu_1,\dots,\mu_k$, the process of polyorthogonalization of an arbitrary linearly independent system of functions $\{\varphi_0(x), \varphi_1(x),\dots, \varphi_m(x)\}$ is described, which allows us to introduce the concept of the $n$th polyorthogonal function for an arbitrary multi-index $n$. Necessary and sufficient conditions are found under which this polyorthogonal function is uniquely determined, and its explicit form is described. The main theorem is a multiple analogue of the Gram–Schmidt orthogonalization theorem.
Keywords: linearly independent system, Pre-Hilbert spaces, perfect system, Gram–Schmidt orthogonalization.
Mots-clés : polyorthogonal polynomials
@article{PFMT_2022_2_a14,
     author = {A. P. Starovoitov and A. D. Kovalkova},
     title = {On polyorthogonal functions of the first type},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {94--98},
     publisher = {mathdoc},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_2_a14/}
}
TY  - JOUR
AU  - A. P. Starovoitov
AU  - A. D. Kovalkova
TI  - On polyorthogonal functions of the first type
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 94
EP  - 98
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_2_a14/
LA  - ru
ID  - PFMT_2022_2_a14
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%A A. D. Kovalkova
%T On polyorthogonal functions of the first type
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 94-98
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_2_a14/
%G ru
%F PFMT_2022_2_a14
A. P. Starovoitov; A. D. Kovalkova. On polyorthogonal functions of the first type. Problemy fiziki, matematiki i tehniki, no. 2 (2022), pp. 94-98. http://geodesic.mathdoc.fr/item/PFMT_2022_2_a14/