On polyorthogonal functions of the first type
Problemy fiziki, matematiki i tehniki, no. 2 (2022), pp. 94-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

In pre-Hilbert function spaces generated by the measures $\mu_1,\dots,\mu_k$, the process of polyorthogonalization of an arbitrary linearly independent system of functions $\{\varphi_0(x), \varphi_1(x),\dots, \varphi_m(x)\}$ is described, which allows us to introduce the concept of the $n$th polyorthogonal function for an arbitrary multi-index $n$. Necessary and sufficient conditions are found under which this polyorthogonal function is uniquely determined, and its explicit form is described. The main theorem is a multiple analogue of the Gram–Schmidt orthogonalization theorem.
Keywords: linearly independent system, Pre-Hilbert spaces, perfect system, Gram–Schmidt orthogonalization.
Mots-clés : polyorthogonal polynomials
@article{PFMT_2022_2_a14,
     author = {A. P. Starovoitov and A. D. Kovalkova},
     title = {On polyorthogonal functions of the first type},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {94--98},
     publisher = {mathdoc},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_2_a14/}
}
TY  - JOUR
AU  - A. P. Starovoitov
AU  - A. D. Kovalkova
TI  - On polyorthogonal functions of the first type
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 94
EP  - 98
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_2_a14/
LA  - ru
ID  - PFMT_2022_2_a14
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%A A. D. Kovalkova
%T On polyorthogonal functions of the first type
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 94-98
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_2_a14/
%G ru
%F PFMT_2022_2_a14
A. P. Starovoitov; A. D. Kovalkova. On polyorthogonal functions of the first type. Problemy fiziki, matematiki i tehniki, no. 2 (2022), pp. 94-98. http://geodesic.mathdoc.fr/item/PFMT_2022_2_a14/

[1] E.M. Nikishin, V.N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR

[2] A.I. Aptekarev, “Multiple orthogonal polynomials”, J. Comput. Appl. Math., 99:1–2 (1998), 423–447 | DOI | MR | Zbl

[3] A. Aptekarev, V. Kaliaguine, J. Van Iseghem, “Multiple orthogonal polynomials”, Constr. Approx., 16 (2000), 487–524 | DOI | MR | Zbl

[4] W. Van Assche, E. Coussement, “Some classical multiple orthogonal polynomials”, J. Comput. Appl. Math., 127 (2001), 317–347 | DOI | MR | Zbl

[5] A.I. Aptekarev, A. Branquinho, W. Van Assche, “Multiple orthogonal polynomials”, Transactions of the American Mathematical Society, 355:10 (2003), 3887–3914 | DOI | MR | Zbl

[6] A.B.J. Kuijlaars, A. Martinez-Finkelshtein, F. Wielonsky, “Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights”, Comm. Math. Phys., 286:1 (2009), 217–275 | DOI | MR | Zbl

[7] V.N. Sorokin, “Approksimatsii Ermita-Pade dlya sistem Nikishina i irratsionalnost chisla $\xi(1.3)$”, UMN, 49:2 (1994), 167–168

[8] E. Daems, A.B.J. Kuijlaars, “Multiple orthogonal polynomials of mixed type and non-intersecting Brownian motions”, J. Approx. Theory, 146:1 (2007), 91–114 | DOI | MR | Zbl

[9] E. Mukhin, A. Varchenko, “Multiple orthogonal polynomials and a counterexample to the Gaudin Bethe Ansatz conjecture”, Trans. Amer. Math. Soc., 359:11 (2007), 5383–5418 | DOI | MR | Zbl

[10] A.I. Aptekarev, V.A. Kalyagin, E.B. Saff, “Higher-order three-term recurrences and asymptotics of multiple orthogonal polynomials”, Constr. Approx., 30:2 (2009), 175–223 | DOI | MR | Zbl

[11] A.B.J. Kuijlaars, L. Zhang, “Singular values of products of Ginibre random matrices, multiple orthogonal polynomials and hard edge scalings”, Comm. Math. Phys., 332:2 (2014), 750–781 | DOI | MR

[12] V.N. Sorokin, “Approksimatsii Ermita-Pade funktsii Veilya i ee proizvodnoi dlya diskretnykh mer”, Matematicheskii sbornik, 211:10 (2020), 139–156 | Zbl

[13] S.P. Suetin, “Polinomy Ermita-Pade i kvadratichnye approksimatsii Shafera dlya mnogoznachnykh analiticheskikh funktsii”, Uspekhi matematicheskikh nauk, 75:4 (454) (2020), 213–214 | Zbl

[14] N.R. Ikonomov, S.P. Suetin, “Algoritm Viskovatova dlya polinomov Ermita-Pade”, Matematicheskii sbornik, 212:9 (2021), 94–118 | Zbl

[15] A.P. Starovoitov, N.V. Ryabchenko, “Analogi formuly Shmidta dlya poliortogonalnykh mnogochlenov pervogo tipa”, Matematicheskie zametki, 110:3 (2021), 424–433 | Zbl

[16] E. Schmidt, “Entwicklung willk-rlicher Funktionen nach Systemen vorgeschriebener”, Math. Ann., 63 (1907), 433–476 | DOI | MR | Zbl

[17] I.P. Natanson, Konstruktivnaya teoriya funktsii, GITTL, M.–L., 1949

[18] E. Schmidt, “Ueber die Entwicklung reeller Funktionen in Reihen mittels der Methode der kleinsten Quadrate”, Journ. für Math., 94 (1883), 41–73 | MR