Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2022_2_a13, author = {C. A. Naligama and O. B. Tsekhan}, title = {Asymptotic approximations validity boundaries for decoupling transformation of three-time-scale linear time-invariant singularly perturbed systems with delay}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {83--93}, publisher = {mathdoc}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PFMT_2022_2_a13/} }
TY - JOUR AU - C. A. Naligama AU - O. B. Tsekhan TI - Asymptotic approximations validity boundaries for decoupling transformation of three-time-scale linear time-invariant singularly perturbed systems with delay JO - Problemy fiziki, matematiki i tehniki PY - 2022 SP - 83 EP - 93 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2022_2_a13/ LA - en ID - PFMT_2022_2_a13 ER -
%0 Journal Article %A C. A. Naligama %A O. B. Tsekhan %T Asymptotic approximations validity boundaries for decoupling transformation of three-time-scale linear time-invariant singularly perturbed systems with delay %J Problemy fiziki, matematiki i tehniki %D 2022 %P 83-93 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2022_2_a13/ %G en %F PFMT_2022_2_a13
C. A. Naligama; O. B. Tsekhan. Asymptotic approximations validity boundaries for decoupling transformation of three-time-scale linear time-invariant singularly perturbed systems with delay. Problemy fiziki, matematiki i tehniki, no. 2 (2022), pp. 83-93. http://geodesic.mathdoc.fr/item/PFMT_2022_2_a13/
[1] M.G. Dmitriev, G.A. Kurina, “Singular perturbations in control problems”, Autom. Remote Control, 67:1 (2006), 1–43 | DOI | MR | Zbl
[2] A.B. Vasil'eva, M.G. Dmitriev, “Singular perturbations in optimal control problems”, J. Math. Sci., 34:3 (1986), 1579–1629 | DOI | Zbl
[3] Y. Zhang, D.S. Naidu, C. Cai, Y. Zou, “Singular perturbations and time scales in control theories and applications: An overview 2002–2012”, Int. J. Inf. Syst. Sci., 9:1 (2014), 1–36 | MR
[4] K. Chang, “Singular perturbations of a general boundary value problem”, SIAM J. Math. Anal., 1972, no. 3, 520–526 | DOI | MR | Zbl
[5] D.S. Naidu, R. Ravinder, “On-three time scale analysis”, 24th IEEE Conference on Decision and Control (Fort Lauderdale, 11–13 Dec. 1985), Fort Lauderdale, FL, USA, 1985, 81–85 | DOI
[6] X. Yang, J.J. Zhu, “A Generalization of Chang Transformation for Linear Time-Varying Systems”, Proceedings of the IEEE Conference on Decision and Control (CDC) (Atlanta, GA, USA, 15–17 December 2010), 6863–6869
[7] G.S. Ladde, S.G. Rajalakshmi, “Diagonalization and stability of multi-time-scale singularly perturbed linear systems”, Applied Mathematics and Computation, 16:2 (1985), 115–140 | DOI | MR | Zbl
[8] P. Kokotovic, “Riccati equation for blockdiagonalization of ill-conditioned systems”, IEEE Transactions on Automatic Control, 20:6 (1975), 812–814 | DOI | MR | Zbl
[9] P.V. Kokotovic, H.K. Khalil, Singular Perturbation Methods in Control: Analysis and Design, O'Reilly, Academic Press, London, UK, 1986, 371 pp. | MR
[10] O.B. Tsekhan, “Decoupling transformation for linear stationary singularly-perturbed system with delay and its applications to analysis and control of spectrum”, Vesnik Hrodzenskaha Dziarzhaunaha Universiteta Imia Ianki Kupaly. Seryia 2. Matematyka. Fizika. Infarmatyka, Vylichal'naia Tekhnika i Kiravanne, 7:3 (2017), 50–61 (in Russian)
[11] O.B. Tsekhan, “Complete controllability conditions for linear singularly perturbed time-invariant systems with multiple delays via Changtype transformation”, Axioms, 8:71 (2019), 1–19 | DOI
[12] C.A. Naligama, O.B. Tsekhan, “On decoupling transformation for time-invariant singularly perturbed systems with delay”, Modern methods of the theory of boundary value problems, Materials of the International Conference: Voronezh Spring Mathematical School: “Pontryagin Readings – XXXI” (Voronezh, 3–9 May, 2020), ANO “Nauka-Unipress”, 2020, 232
[13] Mohan K. Kadalbajoo, “A Survey of Numerical Techniques for Solving Singularly Perturbed Ordinary Differential Equations”, Applied Mathematics and Computation, 130:2–3 (2002), 457–510 | MR | Zbl
[14] C.A. Naligama, O.B. Tsekhan, “Decoupling of Three-Time-Scale Linear Time-Invariant Singularly Perturbed Control Systems with State Delay Based on a Nondegenerate Transformation”, Vesnik of Yanka Kupala State University of Grodno. Series 2. Mathematics. Physics. Informatics, Computer Technology and Control, 11:3 (2021), 27–36 (DRSWMW)
[15] C.A. Naligama, O.B. Tsekhan, “On the asymptotic approximation of decoupling transformation for three time-scale linear time-invariant singularly perturbed system with delay”, International Mathematical Conference “Seventh Bogdanov Readings on Differential Equations” (Republic of Belarus, Minsk June 1–4, 2021), 160–163
[16] L.T. Magalhaes, “Exponential estimates for singularly-perturbed linear functional differential equations”, J. Math. Anal. Appl., 103 (1984), 443–460 | DOI | MR | Zbl