Asymptotic approximations validity boundaries for decoupling transformation of three-time-scale linear time-invariant singularly perturbed systems with delay
Problemy fiziki, matematiki i tehniki, no. 2 (2022), pp. 83-93

Voir la notice de l'article provenant de la source Math-Net.Ru

For time-invariant singularly perturbed control systems with state delay the method of separation of movements is evolved on the basis of Chang-type non-degenerate transformation. Asymptotic approximations for completely separated subsystems of the considered singularly perturbed system with three-time scales are introduced, boundaries of values of small singularity parameters are constructed and proved, which guarantee the validity of asymptotic representations and estimates of solutions underlying matrix operator equations, asymptotic approximations for the decoupling transformation and matrix operators of the split system. An illustrative example is given.
Keywords: singularly perturbed system, three-time-scale system, time delay, decoupling transformation, asymptotic approximation, parameter estimate.
Mots-clés : decomposition
@article{PFMT_2022_2_a13,
     author = {C. A. Naligama and O. B. Tsekhan},
     title = {Asymptotic approximations validity boundaries for decoupling transformation of three-time-scale linear time-invariant singularly perturbed systems with delay},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {83--93},
     publisher = {mathdoc},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_2_a13/}
}
TY  - JOUR
AU  - C. A. Naligama
AU  - O. B. Tsekhan
TI  - Asymptotic approximations validity boundaries for decoupling transformation of three-time-scale linear time-invariant singularly perturbed systems with delay
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 83
EP  - 93
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_2_a13/
LA  - en
ID  - PFMT_2022_2_a13
ER  - 
%0 Journal Article
%A C. A. Naligama
%A O. B. Tsekhan
%T Asymptotic approximations validity boundaries for decoupling transformation of three-time-scale linear time-invariant singularly perturbed systems with delay
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 83-93
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_2_a13/
%G en
%F PFMT_2022_2_a13
C. A. Naligama; O. B. Tsekhan. Asymptotic approximations validity boundaries for decoupling transformation of three-time-scale linear time-invariant singularly perturbed systems with delay. Problemy fiziki, matematiki i tehniki, no. 2 (2022), pp. 83-93. http://geodesic.mathdoc.fr/item/PFMT_2022_2_a13/