On Lockett pairs and Lockett conjecture for $\sigma$-local Fitting classes
Problemy fiziki, matematiki i tehniki, no. 2 (2022), pp. 76-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

For each nonempty Fitting class $\mathfrak{F}$, Lockett defined the smallest Fitting class $\mathfrak{F}^*$ containing $\mathfrak{F}$ such that $(G\times H)_{\mathfrak{F}^*}=G_{\mathfrak{F}^*}\times H_{\mathfrak{F}^*}$ for all groups $G$ and $H$ and the Fitting class $\mathfrak{F}_*$ as the intersection of all nonempty Fitting classes $\mathfrak{X}$ for which $\mathfrak{X}^*=\mathfrak{F}^*$. Lockett pair of nonempty Fitting classes $\mathfrak{F}$ and $\mathfrak{H}$ is an ordered pair $(\mathfrak{F},\mathfrak{H})$ such that $\mathfrak{F}\cap\mathfrak{H}_*=(\mathfrak{F}\cap\mathfrak{H})_*$. If $\mathfrak{F}\subseteq\mathfrak{H}$ and $\mathfrak{F}$ is a Lockett class, then $\mathfrak{F}$ is said to satisfy Lockett conjecture in $\mathfrak{H}$. In the present paper, in the universe $\mathfrak{S}$ of all finite soluble groups, the methods for constructing Lockett pairs are described for the case when $\mathfrak{F}$ is a generalized local Fitting class, and, in particular, for $\mathfrak{F}$ confirmed Lockett conjecture.
Keywords: $\sigma$-local Fitting class, Lockett pair, Lockett conjecture.
@article{PFMT_2022_2_a12,
     author = {E. D. Lantsetova},
     title = {On {Lockett} pairs and {Lockett} conjecture for $\sigma$-local {Fitting} classes},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {76--82},
     publisher = {mathdoc},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_2_a12/}
}
TY  - JOUR
AU  - E. D. Lantsetova
TI  - On Lockett pairs and Lockett conjecture for $\sigma$-local Fitting classes
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 76
EP  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_2_a12/
LA  - ru
ID  - PFMT_2022_2_a12
ER  - 
%0 Journal Article
%A E. D. Lantsetova
%T On Lockett pairs and Lockett conjecture for $\sigma$-local Fitting classes
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 76-82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_2_a12/
%G ru
%F PFMT_2022_2_a12
E. D. Lantsetova. On Lockett pairs and Lockett conjecture for $\sigma$-local Fitting classes. Problemy fiziki, matematiki i tehniki, no. 2 (2022), pp. 76-82. http://geodesic.mathdoc.fr/item/PFMT_2022_2_a12/

[1] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New-York, 1992, 891 pp. | MR

[2] F.P. Lockett, “The Fitting class $\mathfrak{F}^*$”, Math. Z., 137:2 (1974), 131–136 | DOI | MR | Zbl

[3] R.A. Bryce, J. Cossey, “A problem in the Theory of Normal Fitting Classes”, Math. Z., 141 (1975), 99–110 | DOI | MR | Zbl

[4] J.C. Beidleman, P. Hauck, “Über Fittingklassen und die Lockett-Vermuntung”, Math. Z., 167:2 (1979), 161–167 | DOI | MR | Zbl

[5] O.J. Brison, “Hall operators for Fitting classes”, Arch. Math. (Basel), 33:1 (1979), 1–9 | DOI | MR | Zbl

[6] N.T. Vorobev, “O radikalnykh klassakh konechnykh grupp s usloviem Loketta”, Matematicheskie zametki, 43:2 (1988), 161–168 | Zbl

[7] Lujin Zhu, Nanying Yang, N.T. Vorob'ev, “On Lockett Pairs and Lockett Conjecture for $\pi$-Soluble Fitting Classes”, Bull. Malays. Sci. Soc. (2), 36:3 (2013), 825–832 | MR | Zbl

[8] A.N. Skiba, “On one generalization of the local formations”, Problemy fiziki, matematiki i tekhniki, 2018, no. 1 (34), 79–82 | Zbl

[9] A.N. Skiba, “A generalization of a Hall theorem”, J. Algebra and Appl., 15:5 (2015), 21–36 | MR

[10] A.N. Skiba, “Some characterizations of finite $\sigma$-soluble P$\sigma$T-groups”, J. Algebra, 495 (2018), 114–129 | DOI | MR | Zbl

[11] A.N. Skiba, “On sublattices of the subgroup lattice defined by formation Fitting sets”, J. Algebra, 550 (2020), 69–85 | DOI | MR | Zbl

[12] W. Guo, L. Zhang, N.T. Vorob'ev, “On $\sigma$-local Fitting classes”, J. Algebra, 542:15 (2020), 116–129 | DOI | MR | Zbl

[13] B. Fissher, W. Gaschütz, B. Hartley, “Injektoren endlicher auflosbarer Gruppen”, Math. Z., 102 (1967), 337–339 | DOI | MR | Zbl

[14] P. Hauck, “Eine Benerkung zur kleinsten normalen Fittingklasse”, J. Algebra, 53:3 (1979), 395–401 | MR

[15] R.A. Bryce, J. Cossey, “Subgroup closed Fitting classes are formations”, Math. Proc. Camb. Phil. Soc., 91:2 (1982), 225–258 | DOI | MR | Zbl

[16] D. Blessenohl, W. Gaschütz, “Uber normale Schunk-und Fittingklassen”, Math. Z., 118 (1970), 1–8 | DOI | MR | Zbl

[17] N.T. Vorobev, “Lokalnost razreshimykh nasledstvennykh klassov Fittinga”, Matematicheskie zametki, 51:3 (1992), 3–8

[18] P. Hauck, V.N. Zahursky, “A characterization of dominant local Fitting classes”, J. Algebra, 358 (2012), 27–32 | DOI | MR | Zbl