On Lockett pairs and Lockett conjecture for $\sigma$-local Fitting classes
Problemy fiziki, matematiki i tehniki, no. 2 (2022), pp. 76-82

Voir la notice de l'article provenant de la source Math-Net.Ru

For each nonempty Fitting class $\mathfrak{F}$, Lockett defined the smallest Fitting class $\mathfrak{F}^*$ containing $\mathfrak{F}$ such that $(G\times H)_{\mathfrak{F}^*}=G_{\mathfrak{F}^*}\times H_{\mathfrak{F}^*}$ for all groups $G$ and $H$ and the Fitting class $\mathfrak{F}_*$ as the intersection of all nonempty Fitting classes $\mathfrak{X}$ for which $\mathfrak{X}^*=\mathfrak{F}^*$. Lockett pair of nonempty Fitting classes $\mathfrak{F}$ and $\mathfrak{H}$ is an ordered pair $(\mathfrak{F},\mathfrak{H})$ such that $\mathfrak{F}\cap\mathfrak{H}_*=(\mathfrak{F}\cap\mathfrak{H})_*$. If $\mathfrak{F}\subseteq\mathfrak{H}$ and $\mathfrak{F}$ is a Lockett class, then $\mathfrak{F}$ is said to satisfy Lockett conjecture in $\mathfrak{H}$. In the present paper, in the universe $\mathfrak{S}$ of all finite soluble groups, the methods for constructing Lockett pairs are described for the case when $\mathfrak{F}$ is a generalized local Fitting class, and, in particular, for $\mathfrak{F}$ confirmed Lockett conjecture.
Keywords: $\sigma$-local Fitting class, Lockett pair, Lockett conjecture.
@article{PFMT_2022_2_a12,
     author = {E. D. Lantsetova},
     title = {On {Lockett} pairs and {Lockett} conjecture for $\sigma$-local {Fitting} classes},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {76--82},
     publisher = {mathdoc},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_2_a12/}
}
TY  - JOUR
AU  - E. D. Lantsetova
TI  - On Lockett pairs and Lockett conjecture for $\sigma$-local Fitting classes
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 76
EP  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_2_a12/
LA  - ru
ID  - PFMT_2022_2_a12
ER  - 
%0 Journal Article
%A E. D. Lantsetova
%T On Lockett pairs and Lockett conjecture for $\sigma$-local Fitting classes
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 76-82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_2_a12/
%G ru
%F PFMT_2022_2_a12
E. D. Lantsetova. On Lockett pairs and Lockett conjecture for $\sigma$-local Fitting classes. Problemy fiziki, matematiki i tehniki, no. 2 (2022), pp. 76-82. http://geodesic.mathdoc.fr/item/PFMT_2022_2_a12/