Electrical properties of SiO$_2$:Cu$^\circ$ thin films produced by pulse laser deposition
Problemy fiziki, matematiki i tehniki, no. 2 (2022), pp. 7-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

The data on the electrical properties of SiO$_2$:Cu$^\circ$ films are presented. The dependence of voltage on the solar irradiation intensity is presented. It was revealed that at increase in copper ions concentration in the thin films of SiO$_2$:Cu$^\circ$ their electrical conductivity is decreasing due to the increase of the distance between the nanoparticles of copper distributed in the dielectric matrix of SiO$_2$. The films have the non-linear VA characteristic with the parts of voltage limits at the range of $7\dots 10$ V. At the same time, the photoelectric response was caused by generation of voltage of the order of temperature potential with the evident dependence on the solar irradiation. That means the possibility of the films application as the irradiation sensors.
Keywords: thin films, copper ions, silica, pulsed laser evaporation, volt-ampere characteristics, photoelectric, solar radiation.
@article{PFMT_2022_2_a0,
     author = {M. F. S. H. Al-Kamali and D. I. Zalizny and A. A. Boika and N. N. Fedosenko},
     title = {Electrical properties of {SiO}$_2${:Cu}$^\circ$ thin films produced by pulse laser deposition},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {7--11},
     publisher = {mathdoc},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_2_a0/}
}
TY  - JOUR
AU  - M. F. S. H. Al-Kamali
AU  - D. I. Zalizny
AU  - A. A. Boika
AU  - N. N. Fedosenko
TI  - Electrical properties of SiO$_2$:Cu$^\circ$ thin films produced by pulse laser deposition
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 7
EP  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_2_a0/
LA  - ru
ID  - PFMT_2022_2_a0
ER  - 
%0 Journal Article
%A M. F. S. H. Al-Kamali
%A D. I. Zalizny
%A A. A. Boika
%A N. N. Fedosenko
%T Electrical properties of SiO$_2$:Cu$^\circ$ thin films produced by pulse laser deposition
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 7-11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_2_a0/
%G ru
%F PFMT_2022_2_a0
M. F. S. H. Al-Kamali; D. I. Zalizny; A. A. Boika; N. N. Fedosenko. Electrical properties of SiO$_2$:Cu$^\circ$ thin films produced by pulse laser deposition. Problemy fiziki, matematiki i tehniki, no. 2 (2022), pp. 7-11. http://geodesic.mathdoc.fr/item/PFMT_2022_2_a0/

[1] J. Chen et. al., “An Overview of Stretchable Strain Sensors from Conductive Polymer Nanocomposites”, J. Mater. Chem. C, 38:7 (2019), 11710–11730 | DOI

[2] A.S. Lanje et. al., “Synthesis and optical characterization of copper oxide nanoparticles”, Adv. Appl. Sci. Res., 2010, no. 1, 36–40

[3] S. Barth, C. Harnagea, S. Mathur, F. Rosei, “The elastic moduli of oriented tin oxide nanowires”, Nanotechnology, 20:11 (2009), 115705 | DOI

[4] A.V. Korshunov, A.P. Ilin, “Vliyanie sostoyaniya oksidno-gidroksidnoi obolochki na reaktsionnuyu sposobnost nanochastits alyuminiya”, Izvestiya Tomskogo politekhnicheskogo universiteta, 312:3 (2008), 11–15

[5] M. Naddaf, O. Mrad, A. Al-Zier, “Characterization of nanostructured CuO-porous silicon matrix formed on coppercoated silicon substrate via electrochemical etching”, Appl. Phys. A: Materials Science Processing, 115:4 (2014), 1345 | DOI

[6] A. Kydyr, F.A. Auelbekova, “Razrabotka tekhnologii polucheniya tonkikh plenok oksida medi i issledovanie ikh svoistv”, Nauka, tekhnika i obrazovanie, 2017, no. 6 (36), 64–68

[7] L.B. Matyushkin i dr., “Morfologiya, opticheskie i adsorbtsionnye svoistva sloev oksidov medi, osazhdennykh iz rastvorov kompleksnykh soedinenii”, Fizika i tekhnika poluprovodnikov, 51:5 (2017), 615–619

[8] M.F.S.Kh AlKamali, A.A. Alekseenko, O.A. Titenkov, “Ctrukturoobrazovanie SiO-kserogelei, soderzhaschikh soedineniya medi razlichnogo fazovogo sostava”, Problemy fiziki, matematiki i tekhniki, 2020, no. 3 (44), 7–12

[9] A.A. Alekseenko, M.F.S.Kh. Al-Kamali, O.A. Titenkov, “Sintez i svoistva kserogelei sostava SiO$_2$: Cu$^0$, prednaznachennykh dlya primeneniya v biomeditsinskikh issledovaniyakh”, Vestnik GGTU im. P.O. Sukhogo, 2020, no. 3/4, 40–47

[10] N. Vilya, D.A. Golosov, T.D. Nguen, “Formirovanie plenok oksida titana metodom reaktivnogo magnetronnogo raspyleniya”, Doklady BGUIR, 2019, no. 5 (123), 87–93

[11] A.P. Dostanko i dr., “Elektricheskie i opticheskie svoistva plenok oksida tsinka, nanesennykh metodom ionnoluchevogo raspyleniya oksidnoi misheni”, Fizika i tekhnika poluprovodnikov, 48:9 (2014), 1274–1279

[12] M.F.S.H. AL-Kamali et al., “Structural properties of micropowders composition SiO$_2$: CuO SiO$_2$: Cu$^0$ prepared by sol-gel method”, AlAndalus J. Appl. Scien., 2021, no. 13, January-June, 99–117

[13] R. Neumann, M. Levin-Elad, “Metal oxide (TiO$_2$, MoO$_3$, WO$_3$) substituted silicate xerogels as catalysts for the oxidation of hydrocarbons with hydrogen peroxide”, J. Catal., 166 (1997), 206–217 | DOI

[14] T. Tenkyong, et. al., “Investigation of sol-gel processed CuO/SiO$_2$ nanocomposite as a potential photoanode vaterial”, Mater. Science-Poland, 33:4 (2015), 826–834 | DOI

[15] R.S. da Cruza et al., “Copper Containing Silicates as Catalysts for Liquid Phase Cyclohexane Oxidation”, J. Braz. Chem. Soc., 13:2 (2002), 170–176 | DOI