Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2022_1_a9, author = {F. E. Lomovtsev}, title = {Global correctness theorem to the first mixed problem for the general telegraph equation with variable coefficients on a segment}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {62--73}, publisher = {mathdoc}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2022_1_a9/} }
TY - JOUR AU - F. E. Lomovtsev TI - Global correctness theorem to the first mixed problem for the general telegraph equation with variable coefficients on a segment JO - Problemy fiziki, matematiki i tehniki PY - 2022 SP - 62 EP - 73 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2022_1_a9/ LA - ru ID - PFMT_2022_1_a9 ER -
%0 Journal Article %A F. E. Lomovtsev %T Global correctness theorem to the first mixed problem for the general telegraph equation with variable coefficients on a segment %J Problemy fiziki, matematiki i tehniki %D 2022 %P 62-73 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2022_1_a9/ %G ru %F PFMT_2022_1_a9
F. E. Lomovtsev. Global correctness theorem to the first mixed problem for the general telegraph equation with variable coefficients on a segment. Problemy fiziki, matematiki i tehniki, no. 1 (2022), pp. 62-73. http://geodesic.mathdoc.fr/item/PFMT_2022_1_a9/
[1] F.E. Lomovtsev, “Method of auxiliary mixed problems for semi-bounded string”, Sixth Bogdanov readings on ordinary differential equations, mater. Int. mat. conf. Minsk, BSU, 7–10 Dec 2015 at 2 pm, v. 2, ed. S.G. Krasovsky, IM NAS Belarus, Minsk, 2015, 74–75
[2] F.E. Lomovtsev, “First Mixed Problem for the General Telegraph Equation with Variable Coefficients on the Half-Line”, Journal of the Belarusian State University. Mathemaatics and Informatics, 2021, no. 1, 18–38
[3] F.E. Lomovtsev, “Conclusion of the Smoothness Criterion for the Right-Hand Side of the Model Telegraph Equation with the Rate $a(x, t)$ by the Correction Method”, Modern methods of the theory for boundary value problems, XXXIV Voronezh Spring Mathematical School «Pontryagin Readings-XXXII», dedicated to the memory of A.D. Baeva, mater. Int. Conf. (Voronezh, Voronezh State University, May 3–9, 2021), Voronezh State University. Publishing House, Voronezh, 2021, 284–287
[4] F.E. Lomovtsev, “Global Correctness Theorem for the First Mixed Problem with the General Oscillation Equations of a Bounded String”, Analytic Methods of Analysis and Differential Equations, AMADE 2018, Cambridge Scientific Publishers Ltd., Cottenham, Cambridge CB24 8QY UK, 2020, 165–186
[5] F.E. Lomovtsev, “Global Correctness Theorem of the First Mixed Problem for a Wave Equation in a Half-Band of the Plane”, Vesnik of Yanka Kupala State University of Grodno. Series 2. Mathematics. Physics. Informatics, Computer Engineering and Management, 11:1 (2021), 68–82
[6] V.V. Khromov, “On the convergence of a formal solution by the Fourier method of a wave equation with a summable potential”, Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki, 56:10 (2016), 1795–1809 | MR | Zbl
[7] V.V. Kornev, A.P. Khromov, “The resolvent approach to the Fourier method in the mixed problem for an inhomogeneous wave equation”, Izvestiya Saratovskogo Universiteta. Novaya seriya. Seriya Matematika. Mekhanika. Informatika, 16:4 (2016), 403–413 | MR
[8] A.P. Khromov, “A mixed problem for a wave equation with a summable potential and a nonzero initial velocity”, Doklady Akademii nauk, 474:6 (2017), 668–670 | MR | Zbl
[9] A.P. Khromov, “On the classical solution of the mixed problem for a homogeneous wave equation with fixed ends and zero initial velocity”, Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya Matematika. Mekhanika. Informatika, 19:3 (2019), 280–288 | MR | Zbl
[10] V.V. Kornev, A.P. Khromov, “Classical and generalized solutions to the mixed problem for an inhomogeneous wave equation”, Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki, 59:2 (2019), 107–121 | MR
[11] A.P. Khromov, “Necessary and sufficient conditions for the existence of a classical solution of a mixed problem for a homogeneous wave equation in the case of a summable potential”, Differential Equations, 55:5 (2019), 717–731 | DOI | MR | Zbl
[12] A.P. Khromov, V.V. Kornev, “Classical and generalized solutions of the mixed problem for an inhomogeneous wave-wave equation”, Doklady Akademii nauk, 484:1 (2019), 18–20 | MR | Zbl
[13] V.V. Kornev, A.P. Khromov, “Divergent series and a generalized solution of one mixed problem for the wave equation”, Materials of the International Mathematical Conference, Voronezh Spring Mathematical School (2020 May 3–9, Voronezh, Russia), ANO Nauka-Unipress, Voronezh, 2020, 99–102
[14] I.S. Lomov, “A generalized d'Alembert formula for the telegraph equation in the case of a substantially non-self-adjoint operator”, Materials of the International Mathematical Conference, Voronezh Spring Mathematical School (2020 May 3–9, Voronezh, Russia), ANO Nauka-Unipress, Voronezh, 2020, 124–126
[15] F.E. Lomovtsev, “Riemann Formula of the Classical Solution to the First Mixed Problem for the General Telegraph Equation with Variable Coefficients on the Half-Line”, Tez. dokl. Seventh Bogdanov Readings on differential equations (Minsk, June 1–4, 2021), v. 2, Minsk, 2021, 201–203
[16] E.N. Novikov, Mixed problems for the equation of forced vibrations of a bounded string at unsteady boundary conditions with the first and second oblique derivatives, Abstract of the thesis. dis. ... can-that physical-mat. Sciences (01.01.02), IM NAS Belarus, Minsk, 2017