Kinetic features of deposition and chemical composition of coatings, formed from volatile products of laser dispersion of polytetrafluoroethylene
Problemy fiziki, matematiki i tehniki, no. 1 (2022), pp. 44-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

Regularities for the influence of the pulsed laser radiation intensity with $\lambda=1064$ nm on the dispersion parameters of polytetrafluoroethylene (PTFE), the growth rate of polymer coatings, and their chemical composition have been established. Increased intensity of laser radiation increases the rate of the coating deposition without a noticeable effect on the reactivity of volatile dispersion products. The increased intensity of laser exposure leads to an increase in the content of oxygen groups, fluorine-containing graphite-like clusters in the molecular structure of the deposited coating, and the decrease of the contact angle of water wetting. Based on the analysis of changes in the chemical composition of the coatings, a conclusion was made about a two-stage dispersion process: at the initial stage, the composition of volatile products is independent of the laser radiation intensity; at a later stage, it is determined by the degree of defluorination of the target material, which depends on the intensity of radiation.
Mots-clés : laser dispersion
Keywords: polymer coating, polytetrafluoroethylene, deposition kinetic, chemical composition.
@article{PFMT_2022_1_a6,
     author = {M. A. Yarmolenko},
     title = {Kinetic features of deposition and chemical composition of coatings, formed from volatile products of laser dispersion of polytetrafluoroethylene},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {44--48},
     publisher = {mathdoc},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_1_a6/}
}
TY  - JOUR
AU  - M. A. Yarmolenko
TI  - Kinetic features of deposition and chemical composition of coatings, formed from volatile products of laser dispersion of polytetrafluoroethylene
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 44
EP  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_1_a6/
LA  - ru
ID  - PFMT_2022_1_a6
ER  - 
%0 Journal Article
%A M. A. Yarmolenko
%T Kinetic features of deposition and chemical composition of coatings, formed from volatile products of laser dispersion of polytetrafluoroethylene
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 44-48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_1_a6/
%G ru
%F PFMT_2022_1_a6
M. A. Yarmolenko. Kinetic features of deposition and chemical composition of coatings, formed from volatile products of laser dispersion of polytetrafluoroethylene. Problemy fiziki, matematiki i tehniki, no. 1 (2022), pp. 44-48. http://geodesic.mathdoc.fr/item/PFMT_2022_1_a6/

[1] A.M. Krasovskii, E.M. Tolstopyatov, Poluchenie tonkikh plenok raspyleniem polimerov v vakuume, Nauka i tekhnika, Minsk, 1989, 181 pp.

[2] A.A. Rogachev, Fiziko-khimiya polimernykh pokrytii, osazhdaemykh iz aktivnoi gazovoi fazy, Nauchnyi mir, M., 2014, 287 pp.

[3] D. Zhang, B. Gökce, “Perspective of laser-prototyping nanoparticle-polymer composites”, Applied Surface Science, 392 (2017), 991–1003 | DOI

[4] P.N. Grakovich i dr., “Lazernaya ablyatsiya politetraftoretilena”, Ros. khim. zh. (Zh. Ros. khim. ob-va im. D.I. Mendeleeva), LII:3 (2008), 97–105

[5] A.V. Rogachev, A.S. Strogii, M.V. Bui, V.P. Kazachenko, “Kinetika dispergirovaniya polimerov pod deistviem kontsentrirovannykh potokov energii”, Kompozitsionnye polimernye materialy, 1989, no. 43, 8–14

[6] M.A. Yarmolenko i dr., Mikro- i nanokompozitsionnye polimernye pokrytiya, osazhdaemye iz aktivnoi gazovoi fazy, Radiotekhnika, M., 2016, 424 pp.

[7] L.I. Kravets et al., “Deposition of double-layer coatings for preparing composite membranes with superhydrophobic properties”, High Temperature Material Processes, 23:1 (2019), 77–96 | DOI

[8] K.L. Tan, L.L. Woon, H.K. Wong, “Surface Modification of PlasmaPretreated Poly (tetrafluoroethylene) Films by Graft Copolymerization”, Macromolecules, 26 (1993), 2832–2836 | DOI

[9] D.J. Wilson, R.L. Williams, R.C. Pond, “Plasma modification of PTFE surfaces Part I: Surfaces immediately following plasma treatment”, Surf. Interface Anal., 31 (2001), 385–396 | DOI

[10] M.K. Shi et al., “Angle-resolved XPS Study of Plasmatreated Teflon PFA Surfaces”, Surf. Interface Anal., 23 (1995), 99–104 | DOI