Features of electron-beam synthesis and electrophysical properties of hybrid coatings based on polyaniline and zinc oxide
Problemy fiziki, matematiki i tehniki, no. 1 (2022), pp. 37-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

Kinetic features of deposition and electrophysical properties of two-layer coatings based on zinc oxide and polyaniline (PANI) are determined. The coatings were formed in vacuum by consistent influence of low-energy electrons stream on zinc acetate powder and a mechanical mixture of PANI and phosphorus (V) oxide powders. The application of phosphorus oxide leads to the appearance of linear conductive sections in the PANI structure with a high density of polaron, delocalized structures. For the ZnO – PANI + P$_2$O$_5$ coatings up to 200 nm thick in the temperature range from 20 to 100$^\circ$ C the values of specific conductivity, activation energy of charge carriers were determined.
Keywords: hybrid coatings, polyaniline, zinc oxide, electrophysical properties, electron beam deposition.
@article{PFMT_2022_1_a5,
     author = {A. A. Rogachev and A. M. Mikhalko and M. A. Yarmolenko and Jin Xuhui and Hongliang Zhang and Hongtao Cao and A. V. Rogachev},
     title = {Features of electron-beam synthesis and electrophysical properties of hybrid coatings based on polyaniline and zinc oxide},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {37--43},
     publisher = {mathdoc},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_1_a5/}
}
TY  - JOUR
AU  - A. A. Rogachev
AU  - A. M. Mikhalko
AU  - M. A. Yarmolenko
AU  - Jin Xuhui
AU  - Hongliang Zhang
AU  - Hongtao Cao
AU  - A. V. Rogachev
TI  - Features of electron-beam synthesis and electrophysical properties of hybrid coatings based on polyaniline and zinc oxide
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 37
EP  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_1_a5/
LA  - ru
ID  - PFMT_2022_1_a5
ER  - 
%0 Journal Article
%A A. A. Rogachev
%A A. M. Mikhalko
%A M. A. Yarmolenko
%A Jin Xuhui
%A Hongliang Zhang
%A Hongtao Cao
%A A. V. Rogachev
%T Features of electron-beam synthesis and electrophysical properties of hybrid coatings based on polyaniline and zinc oxide
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 37-43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_1_a5/
%G ru
%F PFMT_2022_1_a5
A. A. Rogachev; A. M. Mikhalko; M. A. Yarmolenko; Jin Xuhui; Hongliang Zhang; Hongtao Cao; A. V. Rogachev. Features of electron-beam synthesis and electrophysical properties of hybrid coatings based on polyaniline and zinc oxide. Problemy fiziki, matematiki i tehniki, no. 1 (2022), pp. 37-43. http://geodesic.mathdoc.fr/item/PFMT_2022_1_a5/

[1] M. Liras et al., “Hybrid materials based on conjugated polymers and inorganic semiconductors as photocatalysts: from environmental to energy applications”, Chem. Soc. Rev., 48 (2019), 5454–5487 | DOI

[2] Alexi C. Arango et al., “Efficient Titanium Oxide/Conjugated Polymer Photovoltaics for Solar Energy Conversion”, Adv. Mater., 12 (2000), 1689–1692 | 3.0.CO;2-9 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[3] A.A. Ragachev et al., “Molecular structure, optical, electrical and sensing properties of PANI-based coatings with silver nanoparticles deposited from the active gas phase”, Applied Surface Science, 351 (2015), 811–818 | DOI

[4] S. Wang et al., “Structure and properties of polyaniline nanocomposite coatings containing gold nanoparticles formed by low-energy electron beam deposition”, Applied Surface Science, 428 (2018), 1070–1078 | DOI

[5] A.A. Rogachev et al., “Structure and electrical properties of polyaniline-based copperchloride or copper bromide coatings deposited via low-energy electron beam”, Applied Surface Science, 483 (2019), 19–25 | DOI

[6] J. Xiao et al., “Formation features, structure and properties of bioactive coatings based on phosphate-calcium layers, deposited by a low energy electron beam”, Surface Coatings Technology, 359 (2019), 6–15 | DOI

[7] A.V. Rogachev et al., “Morphology and structure of antibacterial nanocomposite organic-polymer and metal-polymer coatings deposited from active gas phase”, RSC Adv., 3 (2013), 11226–11233 | DOI

[8] A.A. Rogachev et al., “Heat treatment impact on molecular structure of polymer-based silver containing coatings deposited from the active gas phase”, Progress in Organic Coatings, 81 (2015), 80–86 | DOI

[9] A.A. Rogachev i dr., “Osazhdenie iz gazovoi fazy legirovannykh metallami pokrytii polianilina, ikh molekulyarnaya struktura”, Nanotekhnologii: razrabotka, primenenie - XXI vek, 13:2 (2021), 27–35 | Zbl

[10] M.A. Yarmolenko i dr., Mikro- i nanokompozitsionnye polimernye pokrytiya, osazhdaemye iz aktivnoi gazovoi fazy, ed. A.V. Rogachev, Radiotekhnika, M., 2016, 424 pp.

[11] M.C. Bernard, A. Hugot-Le, “Goff Quantitative characterization of polyaniline films using Raman spectroscopy I: Polaron lattice and bipolaron”, Electrochimica Acta, 52 (2006), 595–603 | DOI

[12] Qin Yao et al., “Abnormally enhanced thermoelectric transport properties of SWNT / PANI hybrid films by the strengthened PANI molecular ordering”, Energy Environ. Sci., 7 (2014), 3801–3807 | DOI

[13] M. Trchová et al., “Raman spectroscopy of polyaniline and oligoaniline thin films”, Electrochimica Acta, 122 (2014), 28–38 | DOI

[14] A.A. Rogachev et al., “Regularities of Fluoropolymer Coating Growth on Pretreated Surfaces from Active Gas Phase”, Materials Science Forum, 970 (2019), 55–62 | DOI

[15] J.E. Pereira da Silva et al., “Raman characterization of polyaniline induced conformational changes”, Synthetic Metals, 101 (1999), 834–835 | DOI

[16] ChunGuey Wu, T. Bein, “Conducting Polyaniline Filaments in a Mesoporous Channel Host”, Science, 264 (1994), 1757–1758 | DOI

[17] C. He et al., “Synthesis and structure of antibacterial coatings formed by electron-beam dispersion of polyvinyl chloride in vacuum”, Surface Coatings Technology, 354 (2018), 38–45 | DOI

[18] N.A. Vorobeva, M.N. Rumyantseva, P.A. Forsh, A.M. Gaskov, “Provodimost nanokristallicheskogo ZnO (Ga)”, Fizika i tekhnika poluprovodnikov, 47 (2013), 637–641