Synthesis of electrostimulation signals based on time-frequency analyses of electromyograms
Problemy fiziki, matematiki i tehniki, no. 1 (2022), pp. 33-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The research results of surface electromyograms (EMG) characteristics of human skeletal muscles, recorded during typical movements are introduced. The most dominant frequencies in the EMG spectrum, during the influence on a muscle, as well as the patterns of change in the EMG spectrum with an increase in the force developed by a muscle, are discovered. It was suggested to synthesize electrostimulation signals into a system with biotechnical feedback, using the discovered patterns.
Keywords: synthesis of electrostimulation signals, time-frequency analysis of electromyograms.
@article{PFMT_2022_1_a4,
     author = {A. N. Osipov and I. O. Khazanovsky and D. A. Kotov and P. I. Baltrukovich},
     title = {Synthesis of electrostimulation signals based on time-frequency analyses of electromyograms},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {33--36},
     year = {2022},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_1_a4/}
}
TY  - JOUR
AU  - A. N. Osipov
AU  - I. O. Khazanovsky
AU  - D. A. Kotov
AU  - P. I. Baltrukovich
TI  - Synthesis of electrostimulation signals based on time-frequency analyses of electromyograms
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 33
EP  - 36
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_1_a4/
LA  - ru
ID  - PFMT_2022_1_a4
ER  - 
%0 Journal Article
%A A. N. Osipov
%A I. O. Khazanovsky
%A D. A. Kotov
%A P. I. Baltrukovich
%T Synthesis of electrostimulation signals based on time-frequency analyses of electromyograms
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 33-36
%N 1
%U http://geodesic.mathdoc.fr/item/PFMT_2022_1_a4/
%G ru
%F PFMT_2022_1_a4
A. N. Osipov; I. O. Khazanovsky; D. A. Kotov; P. I. Baltrukovich. Synthesis of electrostimulation signals based on time-frequency analyses of electromyograms. Problemy fiziki, matematiki i tehniki, no. 1 (2022), pp. 33-36. http://geodesic.mathdoc.fr/item/PFMT_2022_1_a4/

[1] A.M. Berkutov, V.I. Zhulev, G.A. Kuraev, E.M. Proshin (red.), Sistemy kompleksnoi elektromagnitoterapii, uchebnoe posobie dlya vuzov, Laboratoriya Bazovykh znanii, M., 2000, 376 pp.

[2] M.I. Vovk, “Biotekhnicheskie sistemy upravleniya dvigatelnymi funktsiyami cheloveka”, Kibernetika i vychislitelnaya tekhnika, 2017, no. 1 (187), 49–66

[3] A. Osipov et al., “Method of time-frequency analysis of compound electromyogram in estimation of neurogenic control efficiency in human skeletal muscles”, Activitas Nervosa Superior Rediviva, 57:4 (2015), 101–107

[4] M. Mezhennaya et al., “Time-Frequency Analysis of Global Electromyogram in Qualitative and Quantitative Estimation of Human Neuromuscular System Functional Condition”, Biomedical electronics, 2012, no. 2, 3–11

[5] M. Mezhennaya, A. Osipov, N. Davydova, M. Davydov, “The therapy and diagnostic hardwaresoftware complex of total electromyography and electrical stimulation”, Proceedings of Conference -Facilities of Medical Electronics and Novel Medical Technologies, MedElectronics-2014, BSUIR, 2014, 268–272

[6] A.N. Osipov, M.V. Davydov, “Spektralnyi analiz signalov elektrostimulyatsii nervno-myshechnoi tkani”, Doklady BGUIR, 2005, no. 3 (11), 53–58