Synthesis of electrostimulation signals based on time-frequency analyses of electromyograms
Problemy fiziki, matematiki i tehniki, no. 1 (2022), pp. 33-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

The research results of surface electromyograms (EMG) characteristics of human skeletal muscles, recorded during typical movements are introduced. The most dominant frequencies in the EMG spectrum, during the influence on a muscle, as well as the patterns of change in the EMG spectrum with an increase in the force developed by a muscle, are discovered. It was suggested to synthesize electrostimulation signals into a system with biotechnical feedback, using the discovered patterns.
Keywords: synthesis of electrostimulation signals, time-frequency analysis of electromyograms.
@article{PFMT_2022_1_a4,
     author = {A. N. Osipov and I. O. Khazanovsky and D. A. Kotov and P. I. Baltrukovich},
     title = {Synthesis of electrostimulation signals based on time-frequency analyses of electromyograms},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {33--36},
     publisher = {mathdoc},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_1_a4/}
}
TY  - JOUR
AU  - A. N. Osipov
AU  - I. O. Khazanovsky
AU  - D. A. Kotov
AU  - P. I. Baltrukovich
TI  - Synthesis of electrostimulation signals based on time-frequency analyses of electromyograms
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 33
EP  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_1_a4/
LA  - ru
ID  - PFMT_2022_1_a4
ER  - 
%0 Journal Article
%A A. N. Osipov
%A I. O. Khazanovsky
%A D. A. Kotov
%A P. I. Baltrukovich
%T Synthesis of electrostimulation signals based on time-frequency analyses of electromyograms
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 33-36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_1_a4/
%G ru
%F PFMT_2022_1_a4
A. N. Osipov; I. O. Khazanovsky; D. A. Kotov; P. I. Baltrukovich. Synthesis of electrostimulation signals based on time-frequency analyses of electromyograms. Problemy fiziki, matematiki i tehniki, no. 1 (2022), pp. 33-36. http://geodesic.mathdoc.fr/item/PFMT_2022_1_a4/

[1] A.M. Berkutov, V.I. Zhulev, G.A. Kuraev, E.M. Proshin (red.), Sistemy kompleksnoi elektromagnitoterapii, uchebnoe posobie dlya vuzov, Laboratoriya Bazovykh znanii, M., 2000, 376 pp.

[2] M.I. Vovk, “Biotekhnicheskie sistemy upravleniya dvigatelnymi funktsiyami cheloveka”, Kibernetika i vychislitelnaya tekhnika, 2017, no. 1 (187), 49–66

[3] A. Osipov et al., “Method of time-frequency analysis of compound electromyogram in estimation of neurogenic control efficiency in human skeletal muscles”, Activitas Nervosa Superior Rediviva, 57:4 (2015), 101–107

[4] M. Mezhennaya et al., “Time-Frequency Analysis of Global Electromyogram in Qualitative and Quantitative Estimation of Human Neuromuscular System Functional Condition”, Biomedical electronics, 2012, no. 2, 3–11

[5] M. Mezhennaya, A. Osipov, N. Davydova, M. Davydov, “The therapy and diagnostic hardwaresoftware complex of total electromyography and electrical stimulation”, Proceedings of Conference -Facilities of Medical Electronics and Novel Medical Technologies, MedElectronics-2014, BSUIR, 2014, 268–272

[6] A.N. Osipov, M.V. Davydov, “Spektralnyi analiz signalov elektrostimulyatsii nervno-myshechnoi tkani”, Doklady BGUIR, 2005, no. 3 (11), 53–58